Skip to main content
Log in

On Finite Time Singularity and Global Regularity of an Axisymmetric Model for the 3D Euler Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In (Comm Pure Appl Math 62(4):502–564, 2009), Hou and Lei proposed a 3D model for the axisymmetric incompressible Euler and Navier–Stokes equations with swirl. This model shares a number of properties of the 3D incompressible Euler and Navier–Stokes equations. In this paper, we prove that the 3D inviscid model with an appropriate Neumann-Robin or Dirichlet-Robin boundary condition will develop a finite time singularity in an axisymmetric domain. We also provide numerical confirmation for our finite time blowup results. We further demonstrate that the energy of the blowup solution is bounded up to the singularity time, and the blowup mechanism for the mixed Dirichlet-Robin boundary condition is essentially the same as that for the energy conserving homogeneous Dirichlet boundary condition. Finally, we prove that the 3D inviscid model has globally smooth solutions for a class of large smooth initial data with some appropriate boundary condition. Both the analysis and the results we obtain here improve the previous work in a rectangular domain by Hou et al. (Adv Math 230:607–641, 2012) in several respects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardos C., Titi E.: Euler equations for incompressible ideal fluids. Uspekhi Mat. Nauk 623(375), 5–46 (2007)

    Google Scholar 

  2. Beale J.T., Kato T., Majda A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm. Math. Phys. 94(1), 61–66 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Boratav O.N., Pelz R.B.: Direct numerical simulation of transition to turbulence from a high-symmetry initial condition. Phys. Fluids 6, 2757–2784 (1994)

    Article  ADS  MATH  Google Scholar 

  4. Caffarelli L., Kohn R., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Comm. Pure Appl. Math. 35, 771–831 (1982)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Caflisch R., Siegel M.: A semi-analytic approach to Euler singularities. Methods Appl. Anal. 11, 423–430 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chae D.: On the finite-time singularities of the 3D incompressible Euler equations. Comm. Pure Appl. Math. 60, 597–617 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Constantin P.: Note on loss of regularity for solutions of the 3D incompressible Euler and related equations. Commun. Math. Phys. 104, 311–326 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Constantin P.: On the Euler equations of incompressible fluids. Bull. Am. Math. Soc. 44, 603–621 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Constantin P., Fefferman C., Majda A.: Geometric constraints on potentially singular solutions for the 3-D Euler equation. Comm. PDEs. 21, 559–571 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Deng J., Hou T.Y., Yu X.: Geometric properties and non-blowup of 3-D incompressible Euler flow. Comm. PDEs. 30, 225–243 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Deng J., Hou T.Y., Yu X.: Improved geometric conditions for non-blowup of 3D incompressible Euler equation. Comm. PDEs. 31, 293–306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Evans, L.C.: Partial Differential Equations. American Mathematical Society Publ. (1998)

  13. Fefferman, C.: http://www.claymath.org/millennium/Navier-Stokesequations

  14. Foland G.B.: Introduction to Partial Differential Equations. Princeton University Press, Princeton (1995)

    Google Scholar 

  15. Grauer R., Sideris T.: Numerical computation of three dimensional incompressible ideal fluids with swirl. Phys. Rev. Lett. 67, 3511–3514 (1991)

    Article  ADS  Google Scholar 

  16. Grafke T., Grauer R.: Finite-time Euler singularities: a Lagrangian perspective. Appl. Math. Lett. 26, 500–505 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Grauer R., Marliani C., Germaschewski K.: Adaptive mesh refinement for singular solutions of the incompressible Euler equations. Phys. Rev. Lett. 80, 4177–4180 (1998)

    Article  ADS  Google Scholar 

  18. Hou T.Y.: Blow-up or no blow-up? A unified computational and analytic approach to study 3-D incompressible Euler and Navier–Stokes equations. Acta Numer. 18, 277–346 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hou T.Y., Li R.: Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations. J. Nonlinear Sci. 16(6), 39–664 (2006)

    Article  MathSciNet  Google Scholar 

  20. Hou T.Y., Li R.: Blowup or no blowup? The interplay between theorey and numerics. Physica D 237, 1937–1944 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Hou T.Y., Li C.M.: Dynamic stability of the 3D axi-symmetric Navier–Stokes equations with swirl. Comm. Pure Appl. Math. 61(5), 661–697 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hou T.Y., Lei Z.: On the stabilizing effect of convection in three-dimensional incompressible flows. Comm. Pure Appl. Math. 62(4), 502–564 (2009)

    Article  MathSciNet  Google Scholar 

  23. Hou T.Y., Lei Z.: On partial regularity of a 3D model of Navier–Stokes equations. Comm. Math. Phys. 287, 281–298 (2009)

    Article  MathSciNet  Google Scholar 

  24. Hou T.Y., Shi Z., Wang S.: On singularity formation of a 3D model for incompressible Navier–Stokes equations. Adv. Math. 230, 607–641 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kerr R.M.: Evidence for a singularity of the three dimensional, incompressible Euler equations. Phys. Fluids 5(7), 1725–1746 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Lin F.-H.: A new proof of the Caffarelli–Kohn–Nirenberg theorem. Comm. Pure Appl. Math. 51(3), 241–257 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Luo, G., Hou, T.Y.: Potential singular solutions of the 3D incompressible Euler equations. arXiv:1310.0497v1 [physics.flu-dyn] (2013)

  28. Majda A.J., Bertozzi A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  29. Orlandi P., Carnevale G.F.: Nonlinear amplification of vorticity in inviscid interaction of orthogonal Lamb dipoles. Phys. Fluids 19, 057106 (2007)

    Article  ADS  Google Scholar 

  30. Prodi G.: Un teorema di unicità à per le equazioni di Navier–Stokes. Ann. Mat. Pura Appl. 48, 173–182 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  31. Pumir A., Siggia E.D.: Development of singular solutions to the axisymmetric Euler equations. Phys. Fluids A 4, 1472–1491 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Serrin, J.: The initial value problem for the Navier–Stokes equations. In: Nonlinear Problems, pp. 69–98. University of Wisconsin Press, Madison (1963)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Y. Hou.

Additional information

Communicated by V. Šveràk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, T.Y., Lei, Z., Luo, G. et al. On Finite Time Singularity and Global Regularity of an Axisymmetric Model for the 3D Euler Equations. Arch Rational Mech Anal 212, 683–706 (2014). https://doi.org/10.1007/s00205-013-0717-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0717-6

Keywords

Navigation