Skip to main content
Log in

Diffusion Limit of Kinetic Equations for Multiple Species Charged Particles

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In ionic solutions, there are multi-species charged particles (ions) with different properties like mass, charge etc. Macroscopic continuum models like the Poisson–Nernst–Planck (PNP) systems have been extensively used to describe the transport and distribution of ionic species in the solvent. Starting from the kinetic theory for the ion transport, we study a Vlasov–Poisson–Fokker–Planck (VPFP) system in a bounded domain with reflection boundary conditions for charge distributions and prove that the global renormalized solutions of the VPFP system converge to the global weak solutions of the PNP system, as the small parameter related to the scaled thermal velocity and mean free path tends to zero. Our results may justify the PNP system as a macroscopic model for the transport of multi-species ions in dilute solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold, A., Carrillo, J.-A., Gamba, I., Shu, C.-W.: Low and high field scaling limits for the Vlasov– and Wigner–Poisson–Fokker–Planck systems. Transp. Theory Stat. Phys.30(2&3), 121–153 (2001)

  2. Arnold A., Markowich P.A., Toscani G.: On large time asymptotics for drift–diffusion–Poisson systems. Transp. Theory Stat. Phys. 29, 571–581 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Beals R., Protopopescu V.: Abstract time dependent transport equations. J. Math. Anal. Appl. 121, 370–405 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biler P., Hebisch W., Nadzieja T.: The Debye system: existence and large time behavior of solutions. Nonlinear Anal. 23(9), 1189– (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biler P., Dolbeault J.: Long time behavior of solutions of Nernst–Planck and Debye–Hückel drift–diffusion systems. Ann. Henri Poincaré 1, 461–472 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bonilla L., Carrillo J.-A., Soler J.: Asymptotic behavior of an initial-boundary value problem for the Vlasov–Poisson–Fokker–Planck system. SIAM J. Appl. Math. 57(5), 1343–1372 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bouchut F.: Existence and uniqueness of a global smooth solution for the Vlasov–Poisson–Fokker–Planck system in three dimensions. J. Funct. Anal. 111(1), 239–258 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bouchut F.: Smoothing effect for the non-linear Vlasov–Poisson–Fokker–Planck system. J. Differ. Equ. 122(2), 225–238 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bouchut F., Dolbeault J.: On long asymptotics of the Vlasov–Fokker–Planck equation and of the Vlasov–Poisson–Fokker–Planck system with coulombic and newtonian potentials. Differ. Integral Equ. 8, 487–514 (1995)

    MathSciNet  Google Scholar 

  10. Carrillo, J.-A.: Global weak solutions for the initial-boundary value problems to the Vlasov–Poisson–Fokker–Planck system. Math. Methods Appl. Sci. 21, 907–938 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Carrillo J.-A., Soler J.: On the initial value problem for the Vlasov–Poisson–Fokker–Planck system with initial data in L p spaces. Math. Methods Appl. Sci. 18(10), 825–839 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Carrillo J.-A., Soler J., Vazquez J.-L.: Asymptotic behaviour and self-similarity for the three dimensional Vlasov–Poisson–Fokker–Planck system. J. Funct. Anal. 141, 99–132 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cercignani C.: The Boltzmann Equation and its Applications. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  14. Cercignani, C.: Scattering kernels for gas/surface interaction. Proceedings of the Workshop on Hypersonic Flows for Reentry Problems, Vol. 1, INRIA, Antibes, 9–29, 1990

  15. Cercignani C., Gamba I., Levermore C.: A drift-collision balance for a Boltzmann–Poisson system in bounded domains. SIAM J. Appl. Math. 61(6), 1932–1958 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cercignani C., Lampis M., Lentati A.: A new scattering kernel in kinetic theory of gases. Transp. Theory Stat. Phys. 24, 1319–1336 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Cessenat M.: Théorèmes de trace pour des espaces de fonctions de la neutronique. CRAS 300(3), 89–92 (1985)

    MathSciNet  MATH  Google Scholar 

  18. Chandrasekhar S.: Brownian motion, dynamical friction and stellar dynamics. Rev. Mod. Phys. 21, 383–388 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Coalson R., Kurnikova M.: Poisson–Nernst–Planck theory approach to the calculation of current through biological ion channels. IEEE Trans. Nanobiosci. 4, 81–93 (2005)

    Article  Google Scholar 

  20. Csiszar I.: Information-type measures of difference of probability distributions and indirect observations. Stud. Sci. Math. Hung. 2, 299–318 (1967)

    MathSciNet  MATH  Google Scholar 

  21. Darrozès J.-S., Guiraud J.-P.: Généralisation formelle du théorème H en présence de parois. C.R.A.S. (Paris) A262, 1368– (1966)

    Google Scholar 

  22. DiPerna R., Lions P.-L.: Solutions globales déquations du type Vlasov–Poisson. C.R. Acad. Sci. Paris Ser. I Math. 307(12), 655–658 (1988)

    MathSciNet  MATH  Google Scholar 

  23. Diperna R.-J., Lions P.-L., Meyer Y.: L p regularity of velocity averages. Ann. Inst. H. Poincaré Anal. Non Linéaire 8, 271–287 (1991)

    MathSciNet  MATH  Google Scholar 

  24. Dolbeault, J.: Free energy and solutions of the Vlasov–Poisson–Fokker–Planck system: external potential and confinement (large time behavior and steady states). J. Math. Pures Appl. (9) 78(2), 121–157 (1999)

  25. Eisenberg B.: Ionic channels in biological membranes: natural nanotubes. Acc. Chem. Res. 31, 117–123 (1998)

    Article  Google Scholar 

  26. Eisenberg B.: Multiple scales in the simulation of ion channels and proteins. J. Phys. Chem. 114, 20719–20733 (2010)

    Google Scholar 

  27. Eisenberg B., Hyon Y., Liu C.: Energy variational analysis of ions in water and channels: field theory for primitive models of complex ionic fluids. J. Chem. Phys. 133, 104104 (2010)

    Article  ADS  Google Scholar 

  28. Eisenberg B., Liu W.: Poisson–Nernst–Planck systems for ion channels with permanent charges. SIAM J. Math. Anal. 38(6), 1932–1966 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. El Ghani N., Masmoudi N.: Diffusion limit of the Vlasov–Poisson–Fokker–Planck system. Commun. Math. Sci. 8(2), 463–479 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fang W., Ito K.: On the time-dependent drift-diffusion model for semiconductors. J. Differ. Equ. 117, 245–280 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Gajewski H.: On existence, uniqueness, and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors. Z. Angew. Math. Mech. 65, 101–108 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gajewski H., Gröger K.: On the basic equations for carrier transport in semiconductors. J. Math. Anal. Appl. 113(1), 12–35 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  33. Goudon T.: Hydrodynamic limit for the Vlasov–Poisson–Fokker–Planck system: analysis of the two-dimensional case. Math. Models Methods Appl. Sci. 15(5), 737–752 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Goudon T., Nieto J., Poupaud F., Soler J.: Multidimensional high-field limit of the electro-static Vlasov–Poisson–Fokker–Planck system. J. Differ. Equ. 213(2), 418–442 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Gross L.: Logarithmic Sobolev inequalities. Am. J. Math. 97(4), 1061–1083 (1975)

    Article  Google Scholar 

  36. Hille, B.: Ion Channels of Excitable Membranes, 3rd ed. Sinauer Associates, Inc., Sunderland, 2001

  37. Hodgkin A.-L., Huxley A.-F.: A qualitative description of the membrane current and its application to conduction and excitation nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  38. Horng T.-L., Lin T.-C., Liu C., Eisenberg B.: PNP equations with steric effects: a model of ion flow through channels. J. Phys. Chem. B 16, 11422–11441 (2012)

    Article  Google Scholar 

  39. Hyon Y., Eisenberg B., Liu C.: A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci. 9(2), 459–475 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hyon Y., Fonseca J., Eisenberg B., Liu C.: Energy variational approach to study charge inversion (layering) near charged walls. Discrete Contin. Dyn. Syst. Ser. B 17(8), 2725–2743 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hyon Y., Kwak D.-Y., Liu C.: Energetic variational approach in complex fluids: maximum dissipation principle. Discrete Contin. Dyn. Syst. 24(4), 1291–1304 (2010)

    MathSciNet  Google Scholar 

  42. Jüngel, A.: Quasi-hydrodynamic Semiconductor Equations. Progress in Nonlinear Differential Equations and their Applications, Vol. 41. Birkhäuser, Basel, 2001

  43. Jerome J.-W.: Analysis of Charge Transport—a Mathematical Study of Semiconductor Devices. Springer, Berlin (1996)

    Google Scholar 

  44. Kullback S.: A lower bound for discrimination information in terms of variation. IEEE Trans. Inf. Theory 4, 126–127 (1967)

    Article  Google Scholar 

  45. Kunz, W.: Specific Ion Effects. World Scientific Publishing, Singapore, 2009

  46. Lin T.-C., Eisenberg B.: A new approach to the Lennard–Jones potential and a new model: PNP-steric equations. Commun. Math. Sci. 12(1), 149–173 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Markowich, P.-A.: The Stationary Semiconductor Device Equations. Computational Microelectronics. Springer, Vienna, 1986

  48. Markowich P.-A., Ringhofer C.-A., Schmeiser C.: Semiconductor Equations. Springer, Berlin (1986)

    Book  Google Scholar 

  49. Masmoudi N., Tayeb M.: Diffusion limit of a semiconductor Boltzmann–Poisson system. SIAM J. Math. Anal. 38(6), 1788–1807 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Maxwell, J. On stresses in rarefied gases arising from inequalities of temperature. Phil. Trans. Roy. Soc. Lond. 170, 231–256 (1879) (Appendix)

  51. Mischler S.: On the initial boundary value problem for the Vlasov–Poisson–Boltzmann system. Commun. Math. Phys. 210, 447–466 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Mischler S.: On the trace problem for solutions of the Vlasov equation. Commun. Partial Differ. Equ. 25, 1415–1443 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  53. Mischler S.: Kinetic equations with Maxwell boundary conditions. Ann. Sci. Éc. Norm. Supér. 43(5), 719–760 (2010)

    MathSciNet  MATH  Google Scholar 

  54. Nernst W.: Die elektromotorische Wirksamkeit der Ionen. Z. Phys. Chem. 4, 129–181 (1889)

    Google Scholar 

  55. Nieto J., Poupaud F., Soler J.: High-field limit for the Vlasov–Poisson–Fokker–Planck system. Arch. Ration. Mech. Anal. 158(1), 29–59 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  56. Nonner W., Eisenberg B.: Ion permeation and glutamate residues linked by Poisson–Nernst–Planck theory in L-type calcium channels. Biophys. J. 75, 1287–1305 (1998)

    Article  ADS  Google Scholar 

  57. Poupaud F., Soler J.: Parabolic limit and stability of the Vlasov–Fokker–Planck system. Math. Models Methods Appl. Sci. 10(7), 1027–1045 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  58. Rein G., Weckler J.: Generic global classical solutions of the Vlasov–Fokker–Planck–Poisson system in three dimensions. J. Differ. Equ. 99(1), 59–77 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Ukai S.: Solutions of the Boltzmann equation, in patterns and waves-qualitative analysis of differential equations. Stud. Math. Appl. 18, 37–96 (1986)

    Article  MathSciNet  Google Scholar 

  60. Victory H.D.: On the existence of global weak solutions for Vlasov–Poisson–Fokker–Planck systems. J. Math. Anal. Appl. 160(2), 525–555 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  61. Victory H.D., O’Dwyer B.P.: On classical solutions of Vlasov–Poisson–Fokker–Planck systems. Indiana Univ. Math. J. 39(1), 105–156 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  62. Wan L., Xu S.-X., Liao M., Liu C., Sheng P.: Self-consistent approach to global charge neutrality in electrokinetics: a surface potential trap model. Phys. Rev. X 4, 011042 (2014)

    Google Scholar 

  63. Xu S.-X., Sheng P., Liu C.: An energetic variational approach for ion transport. Commun. Math. Sci. 12(4), 779–789 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wu.

Additional information

Communicated by F. Lin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Lin, TC. & Liu, C. Diffusion Limit of Kinetic Equations for Multiple Species Charged Particles. Arch Rational Mech Anal 215, 419–441 (2015). https://doi.org/10.1007/s00205-014-0784-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0784-3

Keywords

Navigation