Skip to main content

Advertisement

Log in

Incompatible Sets of Gradients and Metastability

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We give a mathematical analysis of a concept of metastability induced by incompatibility. The physical setting is a single parent phase, just about to undergo transformation to a product phase of lower energy density. Under certain conditions of incompatibility of the energy wells of this energy density, we show that the parent phase is metastable in a strong sense, namely it is a local minimizer of the free energy in an L 1 neighbourhood of its deformation. The reason behind this result is that, due to the incompatibility of the energy wells, a small nucleus of the product phase is necessarily accompanied by a stressed transition layer whose energetic cost exceeds the energy lowering capacity of the nucleus. We define and characterize incompatible sets of matrices, in terms of which the transition layer estimate at the heart of the proof of metastability is expressed. Finally we discuss connections with experiments and place this concept of metastability in the wider context of recent theoretical and experimental research on metastability and hysteresis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abeyaratne, R., Knowles, J.K.: Evolution of Phase Transitions: A Continuum Theory. Cambridge University Press, London, 2011

  2. Astala K., Faraco D.: Quasiregular mappings and Young measures. Proc. R. Soc. Edinb. Sect. A 132(5), 1045–1056 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aumann R., Hart S.: Bi-convexity and bi-martingales. Isr. J. Math. 54, 159–180 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bailey M., Brown C.J.: The crystal structure of terephthalic acid. Acta Crystallogr. 22, 387–391 (1967)

    Article  Google Scholar 

  5. Ball, J.M.: Constitutive inequalities and existence theorems in nonlinear elastostatics. Nonlinear Analysis and Mechanics, Heriot-Watt Symposium, Vol. 1 (Ed. Knops R.J.) Pitman, London, 1977

  6. Ball J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)

    Article  MATH  Google Scholar 

  7. Ball J.M.: Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Phil. Trans. R. Soc. Lond. A 306, 557–611 (1982)

    Article  MATH  ADS  Google Scholar 

  8. Ball, J.M.: A version of the fundamental theorem for Young measures. Proceedings of conference on ‘Partial differential equations and continuum models of phase transitions’ (Eds. M. Rascle, D. Serre, M. Slemrod). Springer Lecture Notes in Physics, Vol. 359, 3–16, 1989

  9. Ball J.M.: Sets of gradients with no rank-one connections. J. Math. Pures et Appl. 69, 241–259 (1990)

    MATH  Google Scholar 

  10. Ball, J.M.: Some open problems in elasticity. Geometry, Mechanics, and Dynamics. Springer, New York, 3–59, 2002

  11. Ball, J.M., Chu, C., James, R.D.: Hysteresis during stress-induced variant rearrangement. J. Phys. IV C 8, 245–251 (1995)

  12. Ball, J.M., Crooks, E.C.M.: Local minimizers and planar interfaces in a phase-transition model with interfacial energy. Calc. Var. Partial Differ. Equ. 40(3–4), 501–538 (2011)

  13. Ball, J.M., James, R.D.: Varying volume fractions of gradient Young measures (in preparation)

  14. Ball J.M., James R.D.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100, 13–52 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ball, J.M., James, R.D.: Local minimizers and phase transformations. Z. Angew. Math. Mech. 76(Suppl. 2), 389–392 (1996)

  16. Ball, J.M., Koumatos, K.: Quasiconvexity at the boundary and the nucleation of austenite. Arch. Ration. Mech. Anal. (2015, to appear)

  17. Ball J.M., Marsden J.E.: Quasiconvexity at the boundary, positivity of the second variation, and elastic stability. Arch. Ration. Mech. Anal. 86, 251–277 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ball, J.M., Mora-Corral, C.: A variational model allowing both smooth and sharp phase boundaries in solids. Commun. Pure Appl. Anal. 8, 55–81 (2009). http://aimsciences.org/journals/cpaa/

  19. Ball, J.M., Murat, F.: W 1, p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58, 225–253 (1984)

  20. Bhattacharya, K., Firoozye, N.B., James, R.D., Kohn, R.V.: Restrictions on microstructure. Proc. R. Soc. Edinb. 124A, 843–878 (1994)

  21. Chaudhuri, N., Müller, S.: Rigidity estimate for two incompatible wells. Calc. Var. Partial Differ. Equ. 19(4), 379–390 (2004)

  22. Chaudhuri, N., Müller, S.: Scaling of the energy for thin martensitic films. SIAM J. Math. Anal. 38(2), 468–477 (2006). (Electronic)

  23. Chen X., Song Y., Dabade V., James R.D.: Study of the cofactor conditions: conditions of supercompatibility between phases. J. Mech. Phys. Solids 61, 2566–2587 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Chen, X., Song, Y., James, R.D., Tamura, N.: Determination of the transformation stretch tensor for structural transformations. Phys. Rev. Lett. (2015, manuscript submitted for publication)

  25. Chlebík, M., Kirchheim, B.: Rigidity for the four gradient problem. J. Reine Angew. Math. 551, 1–9 (2002)

  26. Chu, C.: Hysteresis and microstructure: a study of biaxial loading on compound twins of copper–aluminium–nickel single crystals. PhD thesis, Department of Aerospace Engineering and Mechanics, University of Minnesota (1993)

  27. Chu, C., James, R.D.: Biaxial loading experiments on Cu–Al–Ni single crystals. Experiments in Smart Materials and Structures. AMD, Vol. 181. ASME, 61–69, 1993

  28. Cui, J., Chu, Y.S., Famodu, O., Furuya, Y., Hattrick-Simpers, J., James, R.D., Ludwig, A., Thienhaus, S., Wuttig, M., Zhang, Z., Takeuchi, I.: Combinatorial search of thermoelastic shape memory alloys with extremely small hysteresis width. Nat. Mater. 5, 286–290 (2006)

  29. Dacorogna, B.: Direct Methods in the Calculus of Variations, 2nd edn. Applied Mathematical Sciences, Vol. 78. Springer, New York, 2008

  30. Davey, R.J., Maginn, S.J., Andrews, S.J., Buckley, A.M., Cottler, D., Dempsey, P., Rout, J.E., Stanley, D.R., Taylor, A.: Stabilization of a metastable phase by twinning. Nature 366, 248–250 (1993)

  31. De Lellis, C., Székelyhidi, L. Jr: Simple proof of two-well rigidity. C. R. Math. Acad. Sci. Paris 343(5), 367–370 (2006)

  32. Delville, R., Kasinathan, S., Zhang, Z., Humbeeck, V., James, R.D., Schryvers, D.: A transmission electron microscopy study of phase compatibility in low hysteresis shape memory alloys. Philos. Mag. 90, 177–195 (2010)

  33. DeSimone, A., Kružík, M.: Domain patterns and hysteresis in phase-transforming solids: analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation. Netw. Heterog. Media 8, 481–489 (2013)

  34. Dolzmann, G., Kirchheim, B., Müller, S., Šverák, V.: The two-well problem in three dimensions. Calc. Var. 10, 21–40 (2000)

  35. Duggin M.J., Rachinger W.A.: The nature of the martensitic transformation in a copper–nickel–aluminum alloy. Acta Metall. 12, 529–535 (1964)

    Article  Google Scholar 

  36. Faraco, D., Székelyhidi, L.: Tartar’s conjecture and localization of the quasiconvex hull in \({\mathbb{R}^{2\times 2}}\). Acta Math. 200(2), 279–305 (2008)

  37. Firoozye, N.: Optimal translations and relaxations of some multiwell energies. PhD thesis, Courant Institute, New York University (1990)

  38. Forclaz A.: Local minimizers and the Schmid law in corner-shaped domains. Arch. Ration. Mech. Anal. 211, 555–591 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  39. Fraenkel, L.E.: On regularity of the boundary in the theory of Sobolev spaces. Proc. Lond. Math. Soc. (3) 39(3), 385–427 (1979)

  40. Grabovsky, Y., Mengesha, T.: Sufficient conditions for strong local minima: the case of C 1 extremals. Trans. Am. Math. Soc. 361(3), 1495–1541 (2009)

  41. Heinz S.: On the structure of the quasiconvex hull in planar elasticity. Calc. Var. 50, 481–489 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  42. James, R.D., Zhang, Z.: A way to search for multiferroic materials with unlikely combinations of physical properties. Magnetism and Structure in Functional Materials. Springer Series in Materials Science, Vol. 9 (Eds. Planes A., Manõsa L., Saxena A.). Springer, Berlin, 159–175, 2005

  43. Kinderlehrer D., Pedregal P.: Characterizations of Young measures generated by gradients. Arch. Ration. Mech. Anal. 115, 329–365 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  44. Kinderlehrer, D., Pedregal, P.: Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4, 59–90 (1994)

  45. Kirchheim, B.: Deformations with finitely many gradients and stability of quasiconvex hulls. C. R. Acad. Sci. Paris Sér. I Math. 332, 289–294 (2001)

  46. Kirchheim, B.: Rigidity and Geometry of Microstructures. Habilitation, University of Leipzig, 2003

  47. Kirchheim, B., Székelyhidi, L. Jr: On the gradient set of Lipschitz maps. J. Reine Angew. Math. 625, 215–229 (2008)

  48. Knüpfer, H., Kohn, R.V.: Minimal energy for elastic inclusions. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 2127, 695–717 (2011)

  49. Knüpfer, H., Kohn, R.V., Otto, F.: Nucleation barriers for the cubic to tetragonal phase transformation. Commun. Pure Appl. Math. 66, 867–904 (2013)

  50. Kohn, R.V., Lods, V., Haraux, A.: Some results about two incompatible elastic strains (2000, unpublished mansuscript)

  51. Kohn, R.V., Sternberg, P.: Local minimizers and singular perturbations. Proc. R. Soc. Edinb. 111A, 69–84 (1989)

  52. Kristensen, J.: Lower semicontinuity of variational integrals. PhD thesis, Technical University of Lyngby (1994)

  53. Kuratowski, K., Ryll-Nardzewski, C.: A general theorem on selectors. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 397–403 (1965)

  54. Matos J.P.: Young measures and the absence of fine microstructure in a class of phase transitions. Eur. J. Appl. Math. 3, 31–54 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  55. Maz’ya, V.: Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 342. Springer, Heidelberg, 2011. (Augmented edition)

  56. McShane, E.J., Botts, T.A.: Real Analysis. van Nostrand, Princeton, 1959. (Reprinted Dover, 2005)

  57. Mielke, A., Theil, F.: On rate-independent hysteresis models. Nonlinear Diff. Equ. Appl. 11, 151–189 (2004)

  58. Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Springer, Berlin, 1966

  59. Müller, S.: A sharp version of Zhang’s theorem on truncating sequences of gradients. Trans. Am. Math. Soc. 351(11), 4585–4597 (1999)

  60. Müller, S.: Variational methods for microstructure and phase transitions. Calculus of Variations and Geometric Evolution problems. Lecture Notes in Mathematics, Vol. 1713. Springer, Berlin, 85–210, 1999

  61. Otsuka,K., Shimizu, K.: Morphology and crystallography of thermoelastic Cu–Al–Ni martensite analyzed by the phenomenological theory. Trans. Jpn. Inst. Metals 15, 103–108 (1974)

  62. Parthasarathy, K.R.: Probability Measures on Metric Spaces. Probability and Mathematical Statistics, Vol. 3. Academic Press, New York, 1967

  63. Pedregal P.: Jensen’s inequality in the calculus of variations. Differ. Integral Equ. 7, 57–72 (1994)

    MATH  MathSciNet  Google Scholar 

  64. Reshetnyak, Y.G.: Liouville’s theorem on conformal mappings under minimal regularity assumptions. Sib. Math. J. 8, 631–653 (1967)

  65. Rüland, A.: The cubic-to-orthorhombic phase transition—rigidity and non-rigidity properties in the linear theory of elasticity (to appear)

  66. Schmid, E., Boas, W.: Plasticity of Crystals (translation of the 1935 text in German). F. A. Hughes, London, 1950

  67. Song, Y., Chen, X., Dabade, V., Shield, T.W., James, R.D.: Enhanced reversibility and unusual microstructure of a phase-transforming material. Nature 502, 85–88 (2013)

  68. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, 1970

  69. Strang G.: The width of a chair. Am. Math. Mon. 89, 529–534 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  70. Šverák, V.: On regularity for the Monge–Ampère equation without convexity assumptions. Heriot-Watt University (1991, preprint)

  71. Šverák, V.: New examples of quasiconvex functions. Arch. Ration. Mech. Anal. 119, 293–300 (1992)

  72. Sychev, M.A.: A new approach to Young measure theory, relaxation and convergence in energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 16(6), 773–812 (1999)

  73. Székelyhidi, L. Jr: Rank-one convex hulls in \({\mathbb{R}^{2\times 2}}\). Calc. Var. Partial Differ. Equ. 22(3), 253–281 (2005). (Erratum, same journal 28(2007)545–546)

  74. Tartar, L.: Some remarks on separately convex functions. Proceedings of Conference on Microstructures and Phase Transitions, IMA, Minneapolis, 1990, 1993

  75. Wagner, D.H.: Survey of measurable selection theorems. SIAM J. Control Optim. 15(5), 859–903 (1977)

  76. Wang, J.C., Osawa, M., Yokokawa, T., Harada, H., Enomoto, M.: Modeling the microstructural evolution of Ni-base superalloys by phase field method combined with CALPHAD and CVM. Comput. Mater. Sci. 39, 871–879 (2007)

  77. Wechsler, M.S., Lieberman, D.S., Read, T.A.: On the theory of the formation of martensite. Trans. AIME J. Metals 197, 1503–1515 (1953)

  78. Yasunaga, M., Funatsu, Y., Kojima, S., Otsuka, K., Suzuki, T.: Ultrasonic velocity near the martensitic transformation temperature. J. Phys. C 4, 603–608 (1982)

  79. Yasunaga, M., Funatsu, Y., Kojima, S., Otsuka, K., Suzuki, T.: Measurement of elastic constants. Scr. Met. 17, 1091–1094 (1983)

  80. Zarnetta, R., Takahashi, R., Young, M.L., Savan, A., Furuya, Y., Thienhaus, S., Maass, B., Rahim, M., Frenzel, J., Brunken, H., Chu, Y.S., Srivastava, V., James, R.D., Takeuchi, I., Eggeler, G., Ludwig, A.: Identification of quaternary shape memory alloys with near zero thermal hysteresis and unprecedented functional stability. Adv. Funct. Mater. 20, 1917–1923 (2010)

  81. Zhang, K.: Rank 1 connections and the three “well” problem (1991, unpublished manuscript)

  82. Zhang K.: A construction of quasiconvex functions with linear growth at infinity. Ann. Scuola. Norm. Sup. Pisa 19, 313–326 (1992)

    MATH  Google Scholar 

  83. Zhang, K.: Neighborhoods of parallel wells in two dimensions that separate gradient Young measures. SIAM J. Math. Anal. 34(5), 1207–1225 (2003). (Electronic)

  84. Zhang K.: On separation of gradient Young measures. Calc. Var. Partial Differ. Equ. 17(1), 85–103 (2003)

    Article  MATH  Google Scholar 

  85. Zhang, K.: Separation of gradient Young measures and the BMO. International Conference on Harmonic Analysis and Related Topics (Sydney, 2002). Proceedings of the Centre for Mathematics and Its Applications Australian National University, Vol. 41, pp. 161–169. Australian National University, Canberra, 2003

  86. Zhang, Z., James, R.D., Müller, S.: Energy barriers and hysteresis in martensitic phase transformations. Acta Mater. (Invited Overview) 57, 2332–4352 (2009)

  87. Zwicknagl B.: Microstructures in low-hysteresis shape memory alloys: scaling regimes and optimal needle shapes. Arch. Ration. Mech. Anal. 213, 355–421 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Ball.

Additional information

Communicated by D. Kinderlehrer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ball, J.M., James, R.D. Incompatible Sets of Gradients and Metastability. Arch Rational Mech Anal 218, 1363–1416 (2015). https://doi.org/10.1007/s00205-015-0883-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0883-9

Keywords

Navigation