Skip to main content
Log in

Almost Global Existence for the Prandtl Boundary Layer Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the Prandtl boundary layer equations on the half plane, with initial datum that lies in a weighted H 1 space with respect to the normal variable, and is real-analytic with respect to the tangential variable. The boundary trace of the horizontal Euler flow is taken to be a constant. We prove that if the Prandtl datum lies within \({\varepsilon}\) of a stable profile, then the unique solution of the Cauchy problem can be extended at least up to time \({T_{\varepsilon} \geqq {\rm exp}(\varepsilon^{-1} / {\rm log}(\varepsilon^{-1}))}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alexandre, R., Wang, Y.-G., Xu, C.-J., Yang, T.: Well-posedness of the Prandtl equation in Sobolev spaces. J. Am. Math. Soc. (2014)

  2. Chemin J.-Y., Gallagher I.: Paicu, M.: Global regularity for some classes of large solutions to the Navier–Stokes equations. Ann. Math. (2) 173(2), 983–1012 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Constantin, P., Kukavica, I., Vicol, V.: On the inviscid limit of the Navier–Stokes equations. Proc. Am. Math. Soc. arXiv:1403.5748 (2014)

  4. Cannone M., Lombardo M.C., Sammartino M.: Existence and uniqueness for the Prandtl equations. C. R. Acad. Sci. Paris Sér. I Math. 332(3), 277–282 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Caflisch R.E., Sammartino M.: Existence and singularities for the Prandtl boundary layer equations. ZAMM Z. Angew. Math. Mech. 80(11–12), 733–744 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Drazin P.G., Reid W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  7. E W., Engquist B.: Blowup of solutions of the unsteady Prandtl’s equation. Commun. Pure Appl. Math. 50(12), 1287–1293 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of characteristic boundary layer flows. arXiv:1406.3862 (2014)

  9. Grenier, E., Guo, Y., Nguyen T.: Spectral instability of symmetric shear flows in a two-dimensional channel. arXiv:1402.1395 (2014)

  10. Grenier, E., Guo, Y., Nguyen, T.: Spectral stability of Prandtl boundary layers: an overview. arXiv:1406.4452 (2014)

  11. Guo Y., Nguyen T.: A note on Prandtl boundary layers. Commun. Pure Appl. Math. 64(10), 1416–1438 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, Y., Nguyen, T.: Prandtl boundary layer expansions of steady Navier–Stokes flows over a moving plate. arXiv:1411.6984 (2014)

  13. Grenier E.: On the nonlinear instability of Euler and Prandtl equations. Commun. Pure Appl. Math. 53(9), 1067–1091 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grenier E.: On the stability of boundary layers of incompressible Euler equations. J. Differ. Equ. 164(1), 180–222 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Gargano F., Sammartino M., Sciacca V.: Singularity formation for Prandtl’s equations. Phys. D 238(19), 1975–1991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gérard-Varet D., Dormy E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23(2), 591–609 (2010)

    Article  MATH  Google Scholar 

  17. Gérard-Varet, D., Masmoudi, N.: Well-posedness for the Prandtl system without analyticity or monotonicity. arXiv:1305.0221 (2013)

  18. Gérard-Varet D., Nguyen T.: Remarks on the ill-posedness of the Prandtl equation. Asymptot. Anal. 77, 71–88 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Hong L., Hunter J.K.: Singularity formation and instability in the unsteady inviscid and viscous Prandtl equations. Commun. Math. Sci. 1(2), 293–316 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hörmander, L.: The Analysis of Linear Partial Differential Operators III, vol. 257. Springer, Berlin, New York, 1983

  21. Ignatova, M., Kukavica, I., Ziane, M.: Local existence of solutions to the free boundary value problem for the primitive equations of the ocean. J. Math. Phys. 53, 103101 (2012)

  22. Klainerman S.: On “almost global” solutions to quasilinear wave equations in three space dimensions. Commun. Pure Appl. Math. 36(3), 325–344 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kukavica I., Masmoudi N., Vicol V., Wong T.K.: On the local well-posedness of the Prandtl and the hydrostatic Euler equations with multiple monotonicity regions. SIAM J. Math. Anal. 46(6), 3865–3890 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kukavica I., Temam R., Vicol V., Ziane M.: Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain. J. Differ. Equ. 250(3), 1719–1746 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Kukavica I., Vicol V.C.: The domain of analyticity of solutions to the three-dimensional Euler equations in a half space. Discrete Contin. Dyn. Syst. 29(1), 285–303 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Kukavica I., Vicol V.: On the local existence of analytic solutions to the Prandtl boundary layer equations. Commun. Math. Sci. 11(1), 269–292 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lombardo, M.C., Cannone, M., Sammartino, M.: Well-posedness of the boundary layer equations. SIAM J. Math. Anal. 35(4), 987–1004 (2003) (electronic)

  28. Li, W., Wu, D., Xu, C.-J.: Gevrey class smoothing effect for the Prandtl equation. arXiv:1502.03569, 02 (2015)

  29. Liu, C.-J., Wang, Y.-G., Yang, T.: A well-posedness theory for the Prandtl equations in three space variables. arXiv:1405.5308, 05 (2014)

  30. Maekawa Y. (2014) On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane. Commun. Pure Appl. Math. 67(7): 1045–1128

  31. Masmoudi N., Wong T.K.: On the H s theory of hydrostatic Euler equations. Arch. Ration. Mech. Anal. 204(1), 231–271 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Masmoudi, N., Wong, T.K.: Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Commun. Pure Appl. Math. arXiv:1206.3629 (2014)

  33. Olenik, O.A.: On the mathematical theory of boundary layer for an unsteady flow of incompressible fluid. J. Appl. Math. Mech. 30, 951–974 (1967) (1966)

  34. Oliver M., Titi E.S.: On the domain of analyticity of solutions of second order analytic nonlinear differential equations. J. Differ. Equ. 174(1), 55–74 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Prandtl, L.: Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verh. III Intern. Math. Kongr. Heidelberg. Teuber, Leipzig, 485–491, 1904

  36. Paicu M., Vicol V.: Analyticity and gevrey-class regularity for the second-grade fluid equations. J. Math. Fluid Mech. 13(4), 53–555 (2011)

    Article  MathSciNet  Google Scholar 

  37. Paicu M., Zhang Z.: Global well-posedness for 3D Navier–Stokes equations with ill-prepared initial data. J. Inst. Math. Jussieu. 13(2), 395–411 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sammartino M., Caflisch R.E.: Zero viscosity limit for analytic solutions, of the Navier–Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192(2), 433–461 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Wang, Y.-G., Xie, F., Yang, T.: Local well-posedness of Prandtl equations for compressible flow in two space variables. arXiv:1407.3637, 07 (2014)

  40. Xin Z., Zhang L.: On the global existence of solutions to the Prandtl’s system. Adv. Math. 181(1), 88–133 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, P., Zhang, Z.: Long time well-posdness of Prandtl system with small and analytic initial data. arXiv:1409.1648 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Ignatova.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatova, M., Vicol, V. Almost Global Existence for the Prandtl Boundary Layer Equations. Arch Rational Mech Anal 220, 809–848 (2016). https://doi.org/10.1007/s00205-015-0942-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0942-2

Keywords

Navigation