Skip to main content
Log in

A General Approach to Time Periodic Incompressible Viscous Fluid Flow Problems

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This article develops a general approach to time periodic incompressible fluid flow problems and semilinear evolution equations. It yields, on the one hand, a unified approach to various classical problems in incompressible fluid flow and, on the other hand, gives new results for periodic solutions to the Navier–Stokes–Oseen flow, the Navier–Stokes flow past rotating obstacles, and, in the geophysical setting, for Ornstein–Uhlenbeck and various diffusion equations with rough coefficients. The method is based on a combination of interpolation and topological arguments, as well as on the smoothing properties of the linearized equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transform and Cauchy Problems. Monographs in Mathematics, 96, 2nd edition. Birkhäuser Verlag, Basel, 2011

  2. Bergh J., Löfström J.: Interpolation Spaces. Springer, Berlin-Heidelberg-NewYork (1976)

    Book  MATH  Google Scholar 

  3. Borchers W., Miyakawa T.: On stability of exterior stationary Navier–Stokes flows. Acta Math. 174, 311–382 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borchers W., Sohr H.: On the semigroup of the Stokes operator for exterior domains in L q-spaces. Math. Z. 196, 415–425 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burton, T.: Stability and Periodic Solutions of Ordinary and Functional Differential Equations. Academic Press, 1985

  6. Crispo F., Maremonti P.: Navier–Stokes equations in aperture domains: Global existence with bounded flux and time-periodic solutions. Math. Methods Appl. Sci. 31, 249–277 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Duong X., Ouhabaz E.: Complex multiplicative perturbations of elliptic operators: heat kernel bounds and holomorphic functional calculus. Diff. Integral Equ. 12, 395–418 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, Steady State Problems. Springer Monographs in Math., 2nd edition, 2011

  9. Galdi G.P.: Existence and uniqueness of time-periodic solutions to the Navier–Stokes equations in the whole plane. Discrete Contin. Dyn. Syst. 6, 1237–1257 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Galdi G.P.: On the time-periodic flow of a viscous liquid past a moving cylinder. Arch. Ration. Mech. Anal. 210, 451–498 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Galdi G.P., Silvestre A.L.: Existence of time-periodic solutions to the Navier–Stokes equations around a moving body. Pacific J. Math. 223, 251–267 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Galdi G.P., Silvestre A.L.: On the motion of a rigid body in a Navier–Stokes liquid under the action of a time-periodic force. Indiana Univ. Math. J. 58, 2805–2842 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Galdi G.P., Sohr H.: Existence and uniqueness of time-periodic physically reasonable Navier–Stokes flows past a body. Arch. Ration. Mech. Anal. 172, 363–406 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Geissert, M., Heck, H., Hieber, M.: On the equation div u = g and Bogovskii’s operator in Sobolev spaces of negative order. Partial differential equations and functional analysis, Oper. Theory Adv. Appl., vol. 168, pp. 113–121. Birkhäuser, Basel, 2006

  15. Geissert M., Heck H., Hieber M.: L p -Theory of the Navier–Stokes flow in the exterior of a moving or rotating obstacle. J. Reine Angew. Math. 596, 45–62 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Geissert M., Heck H., Hieber M., Wood I.: The Ornstein–Uhlenbeck semigroup in exterior domains. Arch. Math. 85, 554–562 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giga Y.: Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 61, 186–212 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Grafakos L.: Classical Fourier Analysis. Springer, Graduate Texts in Mathematics (2008)

    MATH  Google Scholar 

  19. Heywood J. G.: The Navier–Stokes equations: On the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29, 639–681 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Heck H., Kim H., Kozono H.: On the stationary Navier–Stokes flows around a rotating body. Manuscripta Math. 138, 315–345 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hieber M., Shibata Y.: The Fujita–Kato approach to the Navier–Stokes equations in the rotational framework. Math. Z. 265, 481–491 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hishida, T.: The nonstationary Stokes and Navier–Stokes flows through an aperture. In: Contributions to Current Challenges in Mathematical Fluid Mechanics, (Eds. Galdi G.P. et al.) Advances in Mathematical Fluid Mechanics, pp. 79–123. Birkhäuser, Basel, 2004

  23. Hishida T., Shibata Y.: \({L_{p}-L_{q}}\) Estimate of the Stokes Operator and Navier–Stokes Flows in the Exterior of a Rotating Obstacle. Arch. Ration. Mech. Anal. 193, 339–421 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Iwashita H.: \({L_{q}-L_{r}}\) estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier–Stokes initial value problems in L q spaces. Math. Ann. 285, 265–288 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. KanielS. Shinbrot M.: A reproductive property of the Navier–Stokes equations. Arch. Rational Mech. Anal. 24, 363–369 (1989)

    ADS  MathSciNet  Google Scholar 

  26. Kato T.: Strong L p-solutions of Navier–Stokes equations in \({{\mathbb {R}}^{n}}\) with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    Article  MathSciNet  Google Scholar 

  27. Kobayashi T., Shibata Y.: On the Oseen equation in the three dimensional exterior domains. Math. Ann. 310, 1– (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kozono H., Nakao M.: Periodic solutions solutions to the Navier–Stokes equations in unbounded domains. Tohoku Math. J. 48, 33–50 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kozono H., Mashiko Y., Takada R.: Existence of periodic solutions and their asymptotic stability to the Navier–Stokes equations with Coriolis force. J. Evol. Equ. 14, 565–601 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kubo T.: Periodic solutions to the Navier–Stokes equations in a perturbed half space and an aperture domain. Math. Methods Appl. Sci. 28, 1341–1357 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Kyed M.: The existence and regularity of time-periodic solutions to the three dimensional Navier–Stokes equations in the whole space. Nonlinearity 27, 2909–2935 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Liu, J.H., N'Guerekata, G.M., Van Minh, N.: Topics on Stability and Periodicity in Abstract Differential Equations. Series on Concrete and Applicable Mathematics. World Scientific Publishing, Singapore, 2008

  33. Maremonti P.: Existence and stability of time periodic solutions to the Navier–Stokes equations in the whole space. Nonlinearity 4, 503–529 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Maremonti P., Padula M.: Existence, uniqueness, and attainability of periodic solutions of the Navier–Stokes equations in exterior domains. J. Math. Sci. 93, 719–746 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Massera J.: The existence of periodic solutions of systems of differential equations. Duke Math. J. 17, 457–475 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  36. Miyakawa T.: On nonstationary solutions of the Navier–Stokes equations in an exterior domain. Hiroshima Math. J. 12, 115–140 (1982)

    MathSciNet  MATH  Google Scholar 

  37. Miyakawa T., Teramoto Y.: Existence and periodicity of weak solutions to the Navier–Stokes equations in a time dependent domain. Hiroshima Math. J. 12, 513–528 (1982)

    MathSciNet  MATH  Google Scholar 

  38. Nguyen T.H.: Periodic motions of Stokes and Navier–Stokes flows around a rotating obstacle. Arch. Ration. Mech. Anal. 213, 689–703 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Prodi G.: Qualche risultato riguardo alle equazioni di Navier–Stokes nel caso bidimensionale. Rend. Sem. Mat. Univ. Padova. 30, 1–15 (1960)

    MathSciNet  MATH  Google Scholar 

  40. Prouse G.: Soluzioni periodiche dell’equazione di Navier–Stokes. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 35, 443–447 (1963)

    MathSciNet  MATH  Google Scholar 

  41. Prüss J.: Periodic solutions of semilinear evolution equations. Nonlinear Anal. 3, 601–612 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  42. Serrin J.: A note on the existence of periodic solutions of the Navier–Stokes equations. Arch. Rational Mech. Anal. 3, 120–122 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Shibata, Y.: On the Oseen semigroup with rotating effect. Functional Analysis and Evolution Equations, pp. 595–611. Birkhäuser, Basel, 2008

  44. Taniuchi Y.: On stability solutions of periodic solutions in unbounded domains. Hokkaido Math. J. 28, 147–173 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  45. Taniuchi Y.: On the uniqueness of time-periodic solutions to the Navier–Stokes equations in unbounded domains. Math. Z. 261, 597–615 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam, New York, Oxford, 1978

  47. Van Baalen G., Wittwer P.: Time periodic solutions of the Navier–Stokes equations with nonzero constant boundary conditions at infinity. SIAM J. Math. Anal. 43, 1787–1809 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yamazaki M.: The Navier–Stokes equations in the weak-L n space with time-dependent external force. Math. Ann. 317, 635–675 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yoshizawa, T.: Stability theory and the existence of periodic solutions and almost periodic solutions. Applied Mathematical Sciences. Springer, 1975

  50. Yudovich V.: Periodic motions of a viscous incompressible fluid. Sov. Math. Dokl. 1, 168–172 (1960)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thieu Huy Nguyen.

Additional information

Communicated by E. G. Virga

Thieu Huy Nguyen, on leave from Hanoi University of Science and Technology as a research fellow of the Alexander von Humboldt Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geissert, M., Hieber, M. & Nguyen, T.H. A General Approach to Time Periodic Incompressible Viscous Fluid Flow Problems. Arch Rational Mech Anal 220, 1095–1118 (2016). https://doi.org/10.1007/s00205-015-0949-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0949-8

Keywords

Navigation