Skip to main content
Log in

Exponential Decay of the Vorticity in the Steady-State Flow of a Viscous Liquid Past a Rotating Body

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Consider the flow of a Navier–Stokes liquid past a body rotating with a prescribed constant angular velocity, \({\omega}\), and assume that the motion is steady with respect to a body-fixed frame. In this paper we show that the vorticity field associated to every “weak” solution corresponding to data of arbitrary “size” (Leray Solution) must decay exponentially fast outside the wake region at sufficiently large distances from the body. Our result improves and generalizes in a non-trivial way famous results by Clark (Indiana Univ Math J 20:633–654, 1971) and Babenko and Vasil’ev (J Appl Math Mech 37:651–665, 1973) obtained in the case \({\omega=0}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amrouche C., Consiglieri L.: On the stationary Oseen equations in \({\mathbb{R}^3}\). Commun. Math. Anal. 10, 5–29 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Babenko, K.I.: On stationary solutions of the problem of flow past a body of a viscous incompressible fluid. Mat. Sb. 91(133), 3–26 (1973, Russian) [English translation: Math. USSR-Sbornik 20, 1–25 (1973)]

  3. Babenko, K.I., Vasil’ev, M.M.: On the asymptotic behavior of a steady flow of viscous fluid at some distance from an immersed body. Prikl. Mat. Meh. 37, 690–705 (1973, Russian) [English translation: J. Appl. Math. Mech. 37, 651–665 (1973)]

  4. Batchelor G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  5. Borchers, W.: Zur Stabilität und Faktorisierungsmethode für die Navier–Stokes Gleichungen inkompressibler viskoser Flüssigkeiten. Habilitationsschrift, University of Paderborn, 1992

  6. Clark D.: The vorticity at infinity for solutions of the stationary Navier–Stokes equations in exterior domains. Indiana Univ. Math. J. 20, 633–654 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deuring P., Kračmar S., Nečasová Š.: A representation formula for linearized stationary incompressible viscous flows around rotating and translating bodies. Discrete Contin. Dyn. Syst. Ser. S 3, 237–253 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deuring P., Kračmar S., Nečasová Š.: On pointwise decay of linearized stationary incompressible viscous flow around rotating and translating bodies. SIAM J. Math. Anal. 43, 705–738 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deuring P., Kračmar S., Nečasová Š.: Linearized stationary incompressible flow around rotating and translating bodies: asymptotic profile of the velocity gradient and decay estimate of the second derivatives of the velocity. J. Differ. Equ. 252, 459–476 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Deuring P., Kračmar S., Nečasová Š.: A linearized system describing stationary incompressible viscous flow around rotating and translating bodies: improved decay estimates of the velocity and its gradient. Discrete Contin. Dyn. Syst. Suppl. 2011, 351–361 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Deuring P., Kračmar S., Necasová Š.: Pointwise decay of stationary rotational viscous incompressible flows with nonzero velocity at infinity. J. Differ. Equ. 255, 1576–1606 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Deuring P., Kračmar S., Nečasová Š.: Linearized stationary incompressible flow around rotating and translating bodies—Leray solutions. Discrete Contin. Dyn. Syst. Ser. S 7, 967–979 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deuring, P., Kračmar, S., Nečasová, Š.: Asymptotic structure of viscous incompressible flow around a rotating body, with nonvanishing flow field at infinity (submitted)

  14. Farwig R.: The stationary exterior 3D-problem of Oseen and Navier–Stokes equations in anisotropically weighted Sobolev spaces. Math. Z. 211, 409–447 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Farwig R.: An \({L^{q}}\)-analysis of viscous fluid flow past a rotating obstacle. Tôhoku Math. J. 58, 129–147 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Farwig, R.: Estimates of Lower Order Derivatives of Viscous Fluid Flow Past a Rotating Obstacle, Vol. 70. Banach Center Publications, pp. 73–84, 2005

  17. Farwig R., Galdi G.P., Kyed M.: Asymptotic structure of a Leray solution to the Navier–Stokes flow around a rotating body. Pac. J. Math. 253, 367–382 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Farwig R., Hishida T.: Stationary Navier–Stokes flow around a rotating obstacle. Funkcialaj Ekvacioj 50, 371–403 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Farwig R., Hishida T.: Asymptotic profiles of steady Stokes and Navier–Stokes flows around a rotating obstacle. Ann. Univ. Ferrara, Sez. VII 55, 263–277 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Farwig R., Hishida T.: Asymptotic profile of steady Stokes flow around a rotating obstacle. Manuscr. Math. 136, 315–338 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Farwig R., Hishida T.: Leading term at infinity of steady Navier–Stokes flow around a rotating obstacle. Math. Nachr. 284, 2065–2077 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Farwig R., Hishida T., Müller D.: \({L^q}\)-theory of a singular “winding” integral operator arising from fluid dynamics. Pac. J. Math. 215, 297–312 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Farwig R., Krbec M., Nečasová Š.: A weighted \({L^q}\) approach to Stokes flow around a rotating body. Ann. Univ. Ferrara, Sez. VII 54, 61–84 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Farwig R., Krbec M., Nečasová Š: A weighted \({L^q}\)-approach to Oseen flow around a rotating body. Math. Methods Appl. Sci. 31, 551–574 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Farwig R., Neustupa J.: On the spectrum of a Stokes-type operator arising from flow around a rotating body. Manuscr. Math. 122, 419–437 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Finn R.: On the exterior stationary problem for the Navier–Stokes equations, and associated perturbation problems. Arch. Rational Mech. Anal. 19, 363–406 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, Vol. II. Nonlinear Steady Problems, Springer Tracts in Natural Philosophy, Vol. 39. Springer, New York, 1994

  28. Galdi, G.P.: On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications. Handbook of Mathematical Fluid Dynamics, Vol. I (Eds. Friedlander S. and Serre D.). North-Holland, Amsterdam, pp. 653–791, 2002

  29. Galdi G.P.: Steady flow of a Navier–Stokes fluid around a rotating obstacle. J. Elast. 71, 1–31 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Galdi, G.P.: Further properties of steady-state solutions to the Navier–Stokes problem past a three-dimensional obstacle. J. Math. Phys. 48 (2007)

  31. Galdi G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems, 2nd edn. Springer, New York (2011)

    MATH  Google Scholar 

  32. Galdi, G.P.: Further properties of weak solutions to the steady-state Navier–Stokes problem around a rotating body, lecture held at the Workshop “Navier–Stokes Equations”, RWTH Aachen, 2013

  33. Galdi G.P., Heywood J.G., Shibata Y.: On the global existence and convergence to steady state of Navier–Stokes flow past an obstacle that is started from the rest. Arch. Rational Mech. Anal. 138, 307–319 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Galdi G.P., Kyed M.: Steady-state Navier–Stokes flows past a rotating body: Leray solutions are physically reasonable. Arch. Rational Mech. Anal. 200, 21–58 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Galdi G.P., Kyed M.: Asymptotic behavior of a Leray solution around a rotating obstacle. Progress Nonlinear Differ. Equ. Appl. 60, 251–266 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Galdi G.P., Kyed M.: A simple proof of \({L^q}\)-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part I: Strong solutions. Proc. Am. Math. Soc. 141, 573–583 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Galdi G.P., Kyed M.: A simple proof of \({L^q}\)-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part II: Weak solutions. Proc. Am. Math. Soc. 141, 1313–1322 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Galdi G.P., Silvestre A.L.: Strong solutions to the Navier–Stokes equations around a rotating obstacle. Arch. Rational Mech. Anal. 176, 331–350 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Galdi G.P., Silvestre A.L.: The steady motion of a Navier–Stokes liquid around a rigid body. Arch. Rational Mech. Anal. 184, 371–400 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Galdi G.P., Silvestre A.L.: Further results on steady-state flow of a Navier–Stokes liquid around a rigid body. Existence of the wake. RIMS Kôkyûroku Bessatsu B1, 108–127 (2008)

    Google Scholar 

  41. Geissert M., Heck H., Hieber M.: \({L^{p}}\) theory of the Navier–Stokes flow in the exterior of a moving or rotating obstacle. J. Reine Angew. Math. 596, 45–62 (2006)

    MathSciNet  MATH  Google Scholar 

  42. Hishida T.: An existence theorem for the Navier–Stokes flow in the exterior of a rotating obstacle. Arch. Rational Mech. Anal. 150, 307–348 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Hishida T.: The Stokes operator with rotating effect in exterior domains. Analysis 19, 51–67 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hishida T.: \({L^q}\) estimates of weak solutions to the stationary Stokes equations around a rotating body. J. Math. Soc. Japan 58, 744–767 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Hishida T., Shibata Y.: Decay estimates of the Stokes flow around a rotating obstacle. RIMS Kôkyûroku Bessatsu B1, 167–186 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Hishida T., Shibata Y.: \({L_p}\)\({L_q}\) estimate of the Stokes operator and Navier–Stokes flows in the exterior of a rotating obstacle. Arch. Rational Mech. Anal. 193, 339–421 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Kračmar S., Nečasová Š., Penel P.: Estimates of weak solutions in anisotropically weighted Sobolev spaces to the stationary rotating Oseen equations. IASME Trans. 2, 854–861 (2005)

    MathSciNet  Google Scholar 

  48. Kračmar S., Nečasová Š., Penel P.: Anisotropic \({L^2}\) estimates of weak solutions to the stationary Oseen type equations in \({\mathbb{R}^{3}}\) for a rotating body. RIMS Kôkyûroku Bessatsu B1, 219–235 (2007)

    MathSciNet  MATH  Google Scholar 

  49. Kračmar S., Nečasová Š., Penel P.: Anisotropic \({L^2}\) estimates of weak solutions to the stationary Oseen type equations in 3D—exterior domain for a rotating body. J. Math. Soc. Japan 62, 239–268 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kračmar S., Novotný A., Pokorný M.: Estimates of Oseen kernels in weighted \({L^p}\) spaces. J. Math. Soc. Japan 53, 59–111 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kračmar S., Penel P.: Variational properties of a generic model equation in exterior 3D domains. Funkcialaj Ekvacioj 47, 499–523 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  52. Kračmar S., Penel P.: New regularity results for a generic model equation in exterior 3D domains. Banach Center Publ. Warsaw 70, 139–155 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  53. Kyed M.: Asymptotic profile of a linearized flow past a rotating body. Q. Appl. Math. 71, 489–500 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kyed M.: On a mapping property of the Oseen operator with rotation. Discrete Contin. Dyn. Syst. Ser. S 6, 1315–1322 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Kyed M.: On the asymptotic structure of a Navier–Stokes flow past a rotating body. J. Math. Soc. Japan 66, 1–16 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Ladyzhenskaya, O.A.: Investigation of the Navier–Stokes equation for stationary motion of an incompressible fluid. Uspekhi Mat. Nauk 14(87), 75–97 (1959, Russian)

  57. Leray J.: Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’ hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)

    MathSciNet  MATH  Google Scholar 

  58. Nečasová Š.: Asymptotic properties of the steady fall of a body in viscous fluids. Math. Methods Appl. Sci. 27, 1969–1995 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  59. Nečasová Š.: On the problem of the Stokes flow and Oseen flow in \({\mathbb{R}^{3}}\) with Coriolis force arising from fluid dynamics. IASME Trans. 2, 1262–1270 (2005)

    MathSciNet  Google Scholar 

  60. Nečasová Š., Schumacher K.: Strong solution to the Stokes equations of a flow around a rotating body in weighted \({L^q}\) spaces. Math. Nachr. 284, 1701–1714 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  61. Solonnikov, V.A.: A priori estimates for second order parabolic equations. Trudy Mat. Inst. Steklov., 70, 133–212 (1964, Russian) [English translation: AMS Transl. 65, 51–137 (1967)]

  62. Thomann E.A., Guenther R.B.: The fundamental solution of the linearized Navier–Stokes equations for spinning bodies in three spatial dimensions—time dependent case. J. Math. Fluid Mech. 8, 77–98 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Deuring.

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deuring, P., Galdi, G.P. Exponential Decay of the Vorticity in the Steady-State Flow of a Viscous Liquid Past a Rotating Body. Arch Rational Mech Anal 221, 183–213 (2016). https://doi.org/10.1007/s00205-015-0959-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0959-6

Keywords

Navigation