Skip to main content
Log in

The Cubic-to-Orthorhombic Phase Transition: Rigidity and Non-Rigidity Properties in the Linear Theory of Elasticity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper we investigate the cubic-to-orthorhombic phase transition in the framework of linear elasticity. Using convex integration techniques, we prove that this phase transition represents one of the simplest three-dimensional examples in which already the linearised theory of elasticity displays non-rigidity properties. As a complementary result, we demonstrate that surface energy constraints rule out such highly oscillatory behaviour. We give a full characterization of all possibly emerging patterns for generic material parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Analysis and Continuum Mechanics. Springer, New York, 647–686, 1989

  2. Bhattacharya, K.: Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford Series on Materials Modeling. Oxford University Press, Oxford, 2003

  3. Bhattacharya K., Kohn R.V.: Elastic energy minimization and the recoverable strains of polycrystalline shape-memory materials. Arch. Ration. Mech. Anal., 139(2), 99–180 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Capella, A., Otto, F.: A quantitative rigidity result for the cubic-to-tetragonal phase transition in the geometrically linear theory with interfacial energy. Proc. R. Soc. Edinb. Sect. A Math. 142, 273–327 (2012). doi:10.1017/S0308210510000478

  5. Conti S.: Quasiconvex functions incorporating volumetric constraints are rank-one convex. J. Math. Pures Appl. 90(1), 15–30 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Conti S., Dolzmann G., Kirchheim B.: Existence of Lipschitz minimizers for the three-well problem in solid–solid phase transitions. Ann. de l’Inst. Henri Poincare (C) Non Linear Anal. 24(6), 953–962 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Conti, S., Dolzmann, G., Müller, S.: Korn’s second inequality and geometric rigidity with mixed growth conditions. Calc. Var. Partial Differ. Equ. 1–18 (2012)

  8. Dacorogna B.: Direct Methods in the Calculus of Variations, Vol. 78. Springer, New York (2007)

    Google Scholar 

  9. De Lellis, C., Székelyhidi, L., Jr.: The Euler equations as a differential inclusion. Ann. Math. 1417–1436 (2009)

  10. Dolzmann, G., Kirchheim, B., Müller, S., Šverák, V.: The two-well problem in three dimensions. Calc. Var. Partial Differ. Equ. 10, 21–40 (2000). doi:10.1007/PL00013455

  11. Dolzmann, G., Müller, S.: The influence of surface energy on stress-free microstructures in shape memory alloys. Meccanica 30, 527–539 (1995). doi:10.1007/BF01557083

  12. Dolzmann G., Müller S.: Microstructures with finite surface energy: the two-well problem. Arch. Ration. Mech. Anal. 132, 101–141 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kirchheim, B.: Lipschitz minimizers of the 3-well problem having gradients of bounded variation (1998). (MPI preprint)

  14. Kirchheim, B.: Rigidity and geometry of microstructures. MPI-MIS Lecture Notes, 2007

  15. Kirchheim, B., Spadaro, E., Székelyhidi, L. Jr.: Equidimensional isometric maps (2014). arXiv:1408.6737

  16. Kohn R.V., Müller S.: Surface energy and microstructure in coherent phase transitions. Commun. Pure Appl. Math. 47(4), 405–435 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kondrat’ev V.A., Oleinik O.A.: Boundary-value problems for the system of elasticity theory in unbounded domains. Korn’s inequalities. Russ. Math. Surv. 43(5), 65–119 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Müller, S., Šverák, V.: Convex integration with constraints and applications to phase transitions and partial differential equations. J. Eur. Math. Soc. 1, 393–422 (1999). doi:10.1007/s100970050012

  19. Rüland, A.: Rigidity properties of the cubic-to-orthorhombic phase transition in the linear theory of elasticity with surface energy. Diploma Thesis, 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angkana Rüland.

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rüland, A. The Cubic-to-Orthorhombic Phase Transition: Rigidity and Non-Rigidity Properties in the Linear Theory of Elasticity. Arch Rational Mech Anal 221, 23–106 (2016). https://doi.org/10.1007/s00205-016-0971-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-0971-5

Keywords

Navigation