Skip to main content
Log in

Global Existence of Finite Energy Weak Solutions of Quantum Navier–Stokes Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper we consider the Quantum Navier–Stokes system both in two and in three space dimensions and prove the global existence of finite energy weak solutions for large initial data. In particular, the notion of weak solutions is the standard one. This means that the vacuum region is included in the weak formulation. In particular, no extra terms like damping or cold pressure are added to the system in order to define the velocity field in the vacuum region. The main contribution of this paper is the construction of a regular approximating system consistent with the effective velocity transformation needed to get the necessary a priori estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonelli P., Marcati P.: On the finite energy weak solutions to a system in quantum fluid dynamics. Commun. Math. Phys. 287, 657–686 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Antonelli P., Marcati P.: The quantum hydrodynamics system in two space dimensions. Arch. Ration. Mech. Anal. 203, 499–527 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antonelli, P., Spirito, S.: On the compactness of finite energy weak solutions to the quantum Navier–Stokes equations. arXiv:1512.07496

  4. Audiard C., Haspot B.: Global well-posedness of the Euler–Korteweg system for small irrotational data. Commun. Math. Phys. 351(1), 201–247 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Benzoni-Gavage, S.: Propagating phase boundaries and capillary fluids. http://math.univ-lyon1.fr/~benzoni/Levico.pdf

  6. Benzoni-Gavage S., Danchin R., Descombes S.: On the well-posedness for the Euler–Korteweg model in several space dimensions. Indiana Univ. Math. J. 56, 1499–1579 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bresch D., Couderc F., Noble P., Vila J.P.: A generalization of the quantum Bohm identity: Hyperbolic CFL condition for the Euler–Korteweg equations, Généralisation de l’identité de Bohm quantique: condition CFL hyperbolique pour équations d’EulerKorteweg. Comptes Rendus Math. 354(1), 39–43 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bresch D., Desjardins B.: Sur un modèle de Saint–Venant visqueux et sa limite quasi-géostrophique. [On viscous shallow-water equations (Saint–Venant model) and the quasi-geostrophic limit]. C. R. Math. Acad. Sci. Paris 335(12), 1079–1084 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bresch D., Desjardins B.: Some diffusive capillary models of Korteweg type. C. R. Math. Acad. Sci. Paris 332, 881–886 (2004)

    MATH  Google Scholar 

  10. Bresch D., Desjardins B., Lin C.-K.: On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Commun. Partial Differ. Equ. 28(3–4), 843–868 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bresch D., Desjardins B., Zatorska E.: Two-velocity hydrodynamics in fluid mechanics: Part II. Existence of global \({\kappa}\)-entropy solutions to the compressible Navier-Stokes systems with degenerate viscosities. J. Math. Pures Appl. 104(4), 801–836 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bresch D., Giovangigli V., Zatorska E.: Two-velocity hydrodynamics in fluid mechanics: Part I. Well posedness for zero Mach number systems. J. Math. Pures Appl. 104(4), 762–800 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bresch, D., Jabin, P.-E.: Global existence of weak solutions for compressible Navier–Stokes equations; thermodinamically unstable pressure and anisotropic viscous stress tensor. arXiv:1507.04629v1, 2015

  14. Brull S., Méhats F.: Derivation of viscous correction terms for the isothermal quantum Euler model. ZAMM 90(3), 219–230 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Carlen E.A.: Conservative diffusions. Commun. Math. Phys. 94, 293–315 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Chen Z., Chai X., Dong B., Zhao H.: Global classical solutions to the one-dimensional compressible fluid models of Korteweg type with large initial data. J. Differ. Equ. 259(8), 4376–4411 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Dunn J.E., Serrin J.: On the thermomechanics of interstitial working. Arch. Ration. Mech. Anal. 88(2), 95–133 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feireisl E.: On compactness of solutions to the compressible isentropic Navier–Stokes equations when the density is not square integrable. Comment. Math. Univ. Carol. 42, 83–98 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Germain P., LeFloch P.: The finite energy method for compressible fluids: the Navier–Stokes–Korteweg model. Commun. Pure Appl. Math. 69(1), 3–61 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gisclon M., Lacroix-Violet I.: About the barotropic compressible quantum Navier–Stokes. Nonlinear Anal. 128, 106–121 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Haspot, B.: Global strong solution for the Korteweg system in dimension \({N \geqq 2}\). Math. Ann. (accepted)

  22. Jiang F.: A remark on weak solutions to the barotropic compressible quantum Navier–Stokes equations. Nonlinear Anal. Real World Appl. 12(3), 1733–1735 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jüngel A.: Global weak solutions to compressible Navier–Stokes equations for quantum fluids. SIAM J. Math. Anal. 42(3), 1025–1045 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jüngel A.: Dissipative quantum fluid models. Rivista Mat. Univ. Parma 3, 217–290 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Jüngel A.: Effective velocity in Navier–Stokes equations with third-order derivatives. Nonlinear Anal. 74, 2813–2818 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jüngel A., Matthes D.: The Derrida–Lebowitz–Speer–Spohn equation: existence, non-uniqueness, and decay rates of the solutions. SIAM J. Math. Anal. 39, 1996–2015 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jüngel, A., Milisic, J.P.: Quantum Navier–Stokes equations. In: Progress in Industrial Mathematics at ECMI 2010, (Eds. M. Günther, A. Bartel, M. Brunk, S. Schöps and M. Striebel) Springer, Berlin, 427–439, 2012

  28. Ladyzhenskaya, O., Solonnikov, V.A., Uraltseva, N.N.: Linear and quasilinear equations of parabolic type. In: Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, RI, 1968

  29. Landau L., Lifschitz E.: Quantum Mechanics: Non-relativistic Theory. Pergamon Press, New York (1977)

    Google Scholar 

  30. Lacroix-Violet, I., Vasseur, A.: Global weak solutions to the compressible quantum Navier–Stokes equation and its semi-classical limit. arxiv:1607.06646, 2016.

  31. Li, J., Xin, Z.: Global existence of weak solutions to the barotropic compressible Navier–Stokes flows with degenerate viscosities. arXiv:1504.06826v2, 2015

  32. Lions, P.L.: Mathematical Topics in Fluid Mechanics, Vol. 2. Clarendon Press, Oxford Science Publications, 1996

  33. Mellet A., Vasseur A.: On the barotropic compressible Navier–Stokes equations. Commun. Partial Differ. Equ. 32(1–3), 431–452 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Vasseur, A., Yu, C.: Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations. arXiv:1501.06803v3, 2015

  35. Vasseur, A., Yu, C.: Global weak solutions to compressible quantum Navier–Stokes equations with damping. arXiv:1503.06894, 2015

  36. Wu, Z., Yin, J., Wang, C.: Elliptic and Parabolic Equations. World Scientific Publishing Co. Pvt. Ltd., Hackensack, NJ, 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Antonelli.

Additional information

Communicated by G. Friesecke

We would like to thank Prof. Jing Li for some useful comments. The authors would also like to thank one of the two anonimous referees for his very careful reading of our manuscript and for giving us useful comments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonelli, P., Spirito, S. Global Existence of Finite Energy Weak Solutions of Quantum Navier–Stokes Equations. Arch Rational Mech Anal 225, 1161–1199 (2017). https://doi.org/10.1007/s00205-017-1124-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1124-1

Navigation