Skip to main content
Log in

Fractional White-Noise Limit and Paraxial Approximation for Waves in Random Media

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This work is devoted to the asymptotic analysis of high frequency wave propagation in random media with long-range dependence. We are interested in two asymptotic regimes, that we investigate simultaneously: the paraxial approximation, where the wave is collimated and propagates along a privileged direction of propagation, and the white-noise limit, where random fluctuations in the background are well approximated in a statistical sense by a fractional white noise. The fractional nature of the fluctuations is reminiscent of the long-range correlations in the underlying random medium. A typical physical setting is laser beam propagation in turbulent atmosphere. Starting from the high frequency wave equation with fast non-Gaussian random oscillations in the velocity field, we derive the fractional Itô–Schrödinger equation, that is, a Schrödinger equation with potential equal to a fractional white noise. The proof involves a fine analysis of the backscattering and of the coupling between the propagating and evanescent modes. Because of the long-range dependence, classical diffusion-approximation theorems for equations with random coefficients do not apply, and we therefore use moment techniques to study the convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailly, F.; Clouet, J.F.; Fouque, J.P.: Parabolic and Gaussian white noise approximation for wave propagation in random media. SIAM J. Appl. Math. 56, 1445–1470 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bal, G.; Komorowski, T.; Ryzhik, L.: Asymptotics of the phase of the solutions of the random Schrödinger equation. Arch. Rat. Mech. Anal. 100, 613–664 (2011)

    Article  MATH  Google Scholar 

  3. Bal, G.; Pinaud, O.: Dynamics of Wave Scintillation in Random Media. CPDE 35, 1176–1235 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bal, G., Pinaud, O.: Imaging using transport models for wave-wave correlations. M3AS 21(5), 1071–1093, 2011

  5. Bamberger, A.; Engquist, B.; Halpern, L.; Joly, P.: Parabolic wave equation approximations in heterogeneous media. SIAM J. Appl. Math. 48, 99–128 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Billingsley, P.: Convergence of Probability Measure, 2nd edn. Wiley InterScience, London (1999)

    Book  MATH  Google Scholar 

  7. Borcea, L., Papanicolaou, G., Tsogka, C.: Interferometric array imaging in clutter. Inverse Probl. 21, 1419–1460, 2005

  8. Brinslawn, C.: Kernels of trace class operators. Proc. Am. Math. Soc. 104, 1181–1190 (1988)

    Article  MathSciNet  Google Scholar 

  9. Çınlar, E.: Probability and Stochastics, Graduate Texts in Mathematics 261. Springer, New York (2011)

    Google Scholar 

  10. Claerbout, J.F.: Imaging the Earth's Interior. Blackwell Science, Palo Alto (1985)

    Google Scholar 

  11. Dawson, D.A.; Papanicolaou, G.C.: A random wave process. Appl. Math. Optim. 12, 97–114 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dolan, S.; Bean, C.; Riollet, B.: The broad-band fractal nature of heterogeneity in the upper crust from petrophysical logs. Geophys. J. Int. 132, 489–507 (1998)

    Article  ADS  Google Scholar 

  13. Fannjiang, A.C.; Sølna, K.: Propagation and time reversal of wave beams in atmospheric turbulence. SIAM Multiscale Model. Simul. 3, 522–558 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fouque, J.-P.; Garnier, J.; Papanicolaou, G.; Sølna, K.: Wave Propagation and Time Reversal in Randomly Layered Media. Springer, New York (2007)

    MATH  Google Scholar 

  15. Feldheim, E.: Relations entre les polynomes de Jacobi. Laguerre et Hermite. Acta Math. 75, 117–138 (1942)

    Article  MATH  Google Scholar 

  16. Garcia, A., Rademich, E., Rumsey, H.: A real variable lemma and the continuity of paths of some Gaussian processes. Indiana Univ. Math. J. 20, 565–578, 1970/1971

  17. Garnier, J.; Sølna, K.: Coupled paraxial wave equations in random media in the white-noise regime. Ann. Appl. Probab. 19, 318–346 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Garnier, J.; Sølna, K.: Pulse propagation in random media with long-range correlation. SIAM Multiscale Model. Simul. 7, 1302–1324 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Garnier, J.; Sølna, K.: Scintillation in the white-noise paraxial regime. Commun. Partial Differ. Equ. 39, 626–650 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gomez, C.: Radiative transport limit for the random Schrödinger equation with long-range correlations. J. Math. Pures Appl. 98, 295–327 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Gomez.: Wave decoherence for the random Schrödinger equation with long-range correlations. Commun. Math. Phys. 320, 37–71, 2013

  22. Gomez, C.; Pinaud, O.: Asymptotics of a time-splitting scheme for the random Schrödinger equation with long-range correlations. Math. Model. Numer. Anal. 48, 411–431 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Holm, S.; Sinkus, R.: A unifying fractional wave equation for compressional and shear wave. J. Acoust. Soc. Am. 127, 542–548 (2010)

    Article  ADS  Google Scholar 

  24. Ishimaru, A.: Wave Propagation and Scattering in Random Media. Academic Press, London (1977)

    MATH  Google Scholar 

  25. Marty, R.; Sølna, K.: Acoustic waves in long range random media. SIAM J. Appl. Math. 69, 1065–1083 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Marty, R.; Sølna, K.: A general framework for waves in random media with long-range correlations. Ann. Appl. Probab. 21, 115–139 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Maslowsky, B.; Nualart, D.: Evolution equation driven by a fractional Brownian motion. J. Funct. Anal. 202, 277–305 (2003)

    Article  MathSciNet  Google Scholar 

  28. Nualart, D.; Răşcanu, A.: Differential equations driven by fractional Brownian motion. Collect. Math. 53, 55–81 (2002)

    MathSciNet  MATH  Google Scholar 

  29. Pinaud, O.: A note on stochastic Schrödinger equations with fractional multiplicative noise. J. Differ. Equ. 256, 1467–1491 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators, 2nd edn. Academic Press, New York, 1980.

  31. Sidi, C.; Dalaudier, F.: Turbulence in the stratified atmosphere: recent theoretical developments and experimental results. Adv. Space Res. 10, 25–36 (1990)

    Article  ADS  Google Scholar 

  32. Strohbehn, J.W.: Laser Beam Propagation in the Atmosphere. Springer, Berlin (1978)

    Book  Google Scholar 

  33. Taqqu, M.S.: Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrscheinlichkeitstheorie verw. Gebiete 31, 287–302 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  34. Taqqu, M.S.: Law of the iterated logarithm for sums of nonlinear functions of Gaussian variables that exhibit long range dependence. Z. Wahrscheinlichkeistheorie 40, 203–238 (1977)

    Article  MATH  Google Scholar 

  35. Tappert, F.D.: The parabolic approximation method in wave propagation and underwater acoustics. Lecture Notes in Physics 70, pp. 224–287. Springer, Berlin, 1977

  36. Zähle, M.: Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Relat. Fields 111, 333–374 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Gomez.

Additional information

Communicated by C. Le Bris

Olivier Pinaud acknowledges support from NSF CAREER Grant DMS-1452349.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, C., Pinaud, O. Fractional White-Noise Limit and Paraxial Approximation for Waves in Random Media. Arch Rational Mech Anal 226, 1061–1138 (2017). https://doi.org/10.1007/s00205-017-1150-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1150-z

Navigation