Skip to main content
Log in

Nonexistence of asymptotically self-similar singularities in the Euler and the Navier–Stokes equations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we rule out the possibility of asymptotically self-similar singularities for both of the 3D Euler and the 3D Navier–Stokes equations. The notion means that the local in time classical solutions of the equations develop self-similar profiles as t goes to the possible time of singularity T. For the Euler equations we consider the case where the vorticity converges to the corresponding self-similar voriticity profile in the sense of the critical Besov space norm, \(\dot{B}^0_{\infty, 1}(\mathbb{R}^3)\). For the Navier–Stokes equations the convergence of the velocity to the self-similar singularity is in L q(B(z,r)) for some \(q\in [2, \infty)\), where the ball of radius r is shrinking toward a possible singularity point z at the order of \(\sqrt{T-t}\) as t approaches to T. In the \(L^q (\mathbb{R}^3)\) convergence case with \(q\in [3, \infty)\) we present a simple alternative proof of the similar result in Hou and Li in arXiv-preprint, math.AP/0603126.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beale J.T., Kato T. and Majda A. (1984). Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm. Math. Phys. 94: 61–66

    Article  MATH  MathSciNet  Google Scholar 

  2. Caffarelli L., Kohn R. and Nirenberg L. (1982). Partial regularity of suitable weak solutions of the Navier–Stokes equations. Comm. Pure Appl. Math. 35: 771–831

    Article  MATH  MathSciNet  Google Scholar 

  3. Chae, D.: Nonexistence of self-similar singularities for the 3D incompressible Euler equations. Comm. Math. Phys. (2007, in press)

  4. Chae D. (2004). Local existence and blow-up criterion for the Euler equations in the Besov spaces. Asymp. Anal. 38(3–4): 339–358

    MATH  MathSciNet  Google Scholar 

  5. Chae D. (2003). On the Euler equations in the critical Triebel–Lizorkin spaces. Arch. Rat. Mech. Anal. 170(3): 185–210

    Article  MATH  MathSciNet  Google Scholar 

  6. Chae D. (2003). Remarks on the blow-up of the Euler equations and the related equations. Comm. Math. Phys. 245(3): 539–550

    Article  MathSciNet  Google Scholar 

  7. Chemin J.Y. (1998). Perfect incompressible fluids. Clarendon Press, Oxford

    MATH  Google Scholar 

  8. Constantin P. (1994). Geometric Statistics in Turbulence. SIAM Rev. 36: 73–98

    Article  MATH  MathSciNet  Google Scholar 

  9. Constantin P. (1995). A few results and open problems regarding incompressible fluids. Not. Am. Math. Soc. 42(6): 658–663

    MATH  MathSciNet  Google Scholar 

  10. Constantin P., Fefferman C. and Majda A. (1996). Geometric constraints on potential singularity formulation in the 3-D Euler equations. Comm. P.D.E 21(3–4): 559–571

    MATH  MathSciNet  Google Scholar 

  11. Constantin, P., Foias, C.: Navier–Stokes Equations. Chicago Lectures in Mathematics Series, University Chicago Press (1988)

  12. Escauriaza L., Seregin G. and Sverak V. (2003). L 3,∞-solutions of Navier–Stokes equations and backward uniqueness. Russ. Math. Surv. 58: 211–250

    Article  MathSciNet  Google Scholar 

  13. Giga Y. (1986). Solutions for semilinear parabolic quations in L p and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 62(2): 186–212

    Article  MathSciNet  Google Scholar 

  14. Giga Y. and Kohn R.V. (1985). Asymptotically self-similar blow-up of semilinear heat equations. Comm. Pure Appl. Math. 38: 297–319

    Article  MATH  MathSciNet  Google Scholar 

  15. Greene J.M., Pelz R.B. Stability of postulated, self-similar, hydrodynamic blowup solutions. Phys. Rev. E 62(6), 7982–7986

  16. Hou, T.Y., Li, R.: Nonexistence of local self-similar blow-up for the 3D incompressible Navier–Stokes equations. arXiv-preprint, math.AP/0603126

  17. Kato, T.: Strong Strong L p solutions of the Navier–Stokes equations in \(\mathbb{R}^m\) with applications to weak solutions .Math. Z. 187: 471–480 (1984)

  18. Kerr R. (1993). Evidence for a singularity of the 3-dimensional, incompressible Euler equations. Phys. Fluids A 5: 1725–1746

    Article  MATH  MathSciNet  Google Scholar 

  19. Ladyzenskaya, O.A.: The mathematical theory of viscous incompressible flow. Gordon and Breach (1969)

  20. Leray J. (1934). Essai sur le mouvement d’un fluide visqueux emplissant l’espace. Acta Math. 63: 193–248

    Article  MathSciNet  Google Scholar 

  21. Lin F. (1998). A new proof of the Caffarelli–Kohn–Nirenberg theorem. Comm. Pure Appl. Math. 51(3): 241–257

    Article  MATH  MathSciNet  Google Scholar 

  22. Majda A. (1986). Vorticity and the mathematical theory of incompressible fluid flow. Comm. Pure Appl. Math. 39: 187–220

    Article  MathSciNet  Google Scholar 

  23. Majda A. and Bertozzi A. (2002). Vorticity and incompressible flow. Cambridge University Press, London

    MATH  Google Scholar 

  24. Miller J.R., O’Leary M. and Schonbek M. (2001). Nonexistence of singular pseudo-self-similar solutions of the Navier–Stokes system. Math. Ann. 319(4): 809–815

    Article  MATH  MathSciNet  Google Scholar 

  25. Necas J., Ruzicka M. and Sverak V. (1996). On Leray’s self-similar solutions of the Navier–Stokes equations. Acta Math. 176(2): 283–294

    Article  MATH  MathSciNet  Google Scholar 

  26. Okyama, T.: Interior regularity of weak solutions to the Navier–Stokes equation. Proc. Jpn. Acad. 36, (1960)

  27. Pak, H.C.: Existence of solution for the Euler equations in a critical Besov space \(B^1_{\infty, 1} (\mathbb{R}^n)\). Comm. P.D.E. 29, 1149–1166

  28. Pelz, R.: Symmetry and hydrodynamic blow-up problem. J. Fluid Mech. 444, 299–320

  29. Prodi G. (1959). Un Teorema di Uniciá per le Equazionni di Navier–Stokes. Ann. Mat. Pura Appl. 48(4): 1773–182

    MathSciNet  Google Scholar 

  30. Serrin J. (1962). On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Rat. Mech. Anal. 9: 187–191

    Article  MATH  MathSciNet  Google Scholar 

  31. Gustafson S., Kang K. and Tsai T-P. (2006). Regularity criteria for suitable weak solutions of the Navier–Stokes equations near the boundary. J. Differ. Equ. 226(2): 594–618

    Article  MATH  MathSciNet  Google Scholar 

  32. Temam R. (1986). Navier–Stokes equations, 2nd edn. North-Holland, Amsterdam

    Google Scholar 

  33. Triebel H. (1983). Theory of function spaces. Birkäuser Verlag, Boston

    Google Scholar 

  34. Tsai T-P. (1998). On Leray’s self-similar solutions of the Navier–Stokes equations satisfying local energy estimates. Arch. Rat. Mech. Anal. 143(1): 29–51

    Article  MATH  Google Scholar 

  35. Vishik M. (1998). Hydrodynamics in Besov spaces. Arch. Rat. Mech. Anal. 145: 197–214

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongho Chae.

Additional information

This work was supported partially by KRF Grant(MOEHRD, Basic Research Promotion Fund) and the KOSEF Grant no. R01-2005-000-10077-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chae, D. Nonexistence of asymptotically self-similar singularities in the Euler and the Navier–Stokes equations. Math. Ann. 338, 435–449 (2007). https://doi.org/10.1007/s00208-007-0082-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0082-6

Mathematics Subject Classification (2000)

Navigation