Skip to main content
Log in

Independence in topological and C*-dynamics

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We develop a systematic approach to the study of independence in topological dynamics with an emphasis on combinatorial methods. One of our principal aims is to combinatorialize the local analysis of topological entropy and related mixing properties. We also reframe our theory of dynamical independence in terms of tensor products and thereby expand its scope to C*-dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akin, E., Glasner, E., Weiss B.: Generically there is but one self homeomorphism of the Cantor set. arXiv:math.DS/0603538 v1

  2. Alpern S., Prasad, V.S.: Typical Dynamics of Volume Preserving Homeomorphisms. Cambridge Tracts in Mathematics, 139. Cambridge University Press, Cambridge (2000)

  3. Auslander, J.: Minimal Flows and their Extensions. North-Holland Mathematics Studies, 153. Notas de Matemática [Mathematical Notes], 122. North-Holland Publishing Co., Amsterdam (1988)

  4. Benatti F. and Narnhofer H. (1991). Strong asymptotic abelianness for entropic K-systems. Commun. Math. Phys. 136: 231–250

    Article  MATH  MathSciNet  Google Scholar 

  5. Bergelson V. and Rosenblatt J. (1988). Mixing actions of groups. Illinois J. Math. 32: 65–80

    MATH  MathSciNet  Google Scholar 

  6. Blackadar, B., Kirchberg, E.: Generalized inductive limits and quasidiagonality. In: C*-algebras (Münster, 1999), pp. 23–41. Springer, Berlin (2000)

  7. Blanchard, F.: Fully positive topological entropy and topological mixing. In: Symbolic Dynamics and its Applications (New Haven, CT, 1991), pp. 95–105. Contemp. Math., 135, Amer. Math. Soc., Providence, RI (1992)

  8. Blanchard F. (1993). A disjointness theorem involving topological entropy. Bull. Soc. Math. Fr. 121: 465–478

    MATH  MathSciNet  Google Scholar 

  9. Blanchard F., Glasner E. and Host B. (1997). A variation on the variational principle and applications to entropy pairs. Ergod. Theor. Dyn. Syst. 17: 29–43

    Article  MATH  MathSciNet  Google Scholar 

  10. Blanchard F., Glasner E., Kolyada S. and Maass A. (2002). On Li–Yorke pairs. J. Reine Angew. Math. 547: 51–68

    MATH  MathSciNet  Google Scholar 

  11. Blanchard F. and Lacroix Y. (1993). Zero entropy factors of topological flows. Proc. Am. Math. Soc. 119: 985–992

    Article  MATH  MathSciNet  Google Scholar 

  12. Bourgain J., Fremlin D.H. and Talagrand M. (1978). Pointwise compact sets of Baire-measurable functions. Am. J. Math. 100: 845–886

    Article  MATH  MathSciNet  Google Scholar 

  13. Bowditch, B.H.: Convergence groups and configuration spaces. In: Geometric Group Theory Down Under (Canberra, 1996), pp. 23–54. De Gruyter, Berlin (1999)

  14. Bratteli O. (1972). Inductive limits of finite-dimensional C*-algebras. Trans. Am. Math. Soc. 171: 195–234

    Article  MATH  MathSciNet  Google Scholar 

  15. Bratteli O. and Robinson D.W. (1987). Operator Algebras and Quantum Statistical Mechanics 1. Springer, New York

    MATH  Google Scholar 

  16. Bratteli O. and Robinson D.W. (1997). Operator Algebras and Quantum Statistical Mechanics 2. Springer, Berlin

    MATH  Google Scholar 

  17. Bratteli O., Størmer E., Kishimoto A. and Rørdam M. (1993). The crossed product of a UHF algebra by a shift. Ergod. Theor. Dyn. Syst. 13: 615–626

    MATH  Google Scholar 

  18. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319. Springer, Berlin (1999)

  19. Choi M.-D. and Effros E.G. (1976). The completely positive lifting problem for C*-algebras. Ann. Math. 104: 585–609

    Article  MathSciNet  Google Scholar 

  20. Christensen E. (1980). Near inclusions of C*-algebras. Acta Math. 144(2): 249–265

    Article  MATH  MathSciNet  Google Scholar 

  21. Davidson, K.R.: C*-algebras by Example. Fields Institute Monographs, 6. Amer. Math. Soc., Providence, RI (1996)

  22. Dor L.E. (1975). On sequences spanning a complex l 1-space. Proc. Am. Math. Soc. 47: 515–516

    Article  MATH  MathSciNet  Google Scholar 

  23. Effros, E.G., Ruan, Z.-J.: Operator Spaces. London Mathematical Society Monographs. New Series, 23. The Clarendon Press, Oxford University Press, New York (2000)

  24. Ellis R. (1969). Lectures on Topological Dynamics. W. A. Benjamin, Inc., New York

    MATH  Google Scholar 

  25. Ellis R. (1978). The Furstenberg structure theorem. Pac. J. Math. 76: 345–349

    MATH  Google Scholar 

  26. Ellis R., Glasner E. and Shapiro L. (1975). Adv. Math. 17: 213–260

    Article  MATH  MathSciNet  Google Scholar 

  27. Furstenberg H. (1967). Disjointness in ergodic theory, minimal sets and a problem in Diophantine approximation. Math. Syst. Theory 1: 1–49

    Article  MATH  MathSciNet  Google Scholar 

  28. Furstenberg H. (1981). Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, M. B. Porter Lectures, Princeton

    MATH  Google Scholar 

  29. Glasner E. (1997). A simple characterization of the set of μ-entropy pairs and applications. Isr. J. Math. 102: 13–27

    MATH  MathSciNet  Google Scholar 

  30. Glasner E. (2003). Ergodic Theory via Joinings. American Mathematical Society, Providence

    MATH  Google Scholar 

  31. Glasner E. (2004). Classifying dynamical systems by their recurrence properties. Topol. Methods Nonlinear Anal. 24: 21–40

    MATH  MathSciNet  Google Scholar 

  32. Glasner E. (2006). On tame enveloping semigroups. Colloq. Math. 105: 283–295

    Article  MATH  MathSciNet  Google Scholar 

  33. Glasner E. and Megrelishvili M. (2006). Hereditarily non-sensitive dynamical systems and linear representations. Colloq. Math. 104: 223–283

    MATH  MathSciNet  Google Scholar 

  34. Glasner, E., Weiss, B.: Topological entropy of extensions. In: Ergodic Theory and its Connections with Harmonic Analysis (Alexandria, 1993), pp. 299–307. London Math. Soc. Lecture Note Ser., 205, Cambridge Univ. Press, Cambridge (1995)

  35. Glasner E. and Weiss B. (1995). Quasi-factors of zero entropy systems. J. Am. Math. Soc. 8: 665–686

    Article  MATH  MathSciNet  Google Scholar 

  36. Goodman T.N.T. (1974). Topological sequence entropy. Proc. Lond. Math. Soc. 29(3): 331–350

    Article  MATH  Google Scholar 

  37. Gowers, W.T.: Ramsey methods in Banach space. In: Handbook of the Geometry of Banach spaces, vol. 2, pp. 1071–1097. Elsevier Science, Amsterdam (2003)

  38. Grothendieck A. (1952). Critères de compacité dans les espaces fonctionnels généraux. Am. J. Math. 74: 168–186

    Article  MATH  MathSciNet  Google Scholar 

  39. Huang W. (2006). Tame systems and scrambled pairs under an Abelian group action. Ergod. Theor. Dyn. Syst. 26: 1549–1567

    Article  MATH  Google Scholar 

  40. Huang W., Li S.M., Shao S. and Ye X. (2003). Null systems and sequence entropy pairs. Ergod. Theor. Dyn. Syst. 23: 1505–1523

    Article  MATH  MathSciNet  Google Scholar 

  41. Huang W., Maass A. and Ye X. (2004). Sequence entropy pairs and complexity pairs for a measure. Ann. Inst. Fourier (Grenoble) 54: 1005–1028

    MATH  MathSciNet  Google Scholar 

  42. Huang W. and Ye X. (2006). A local variational relation and applications. Isr. J. Math. 151: 237–280

    MathSciNet  MATH  Google Scholar 

  43. Jacobs K. and Keane M. (1969). 0–1-sequences of Toeplitz type. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 13: 123–131

    Article  MATH  MathSciNet  Google Scholar 

  44. Karpovsky M.G. and Milman V.D. (1978). Coordinate density of sets of vectors. Discret. Math. 24: 177–184

    Article  MATH  MathSciNet  Google Scholar 

  45. Katok A.B. and Stepin A.M. (1970). Metric properties of homeomorphisms that preserve measure. (Russian) Uspehi Mat. Nauk 25: 193–220

    MATH  MathSciNet  Google Scholar 

  46. Kechris, A.S., Rosendal, C.: Turbulence, amalgamation and generic automorphisms of homogeneous structures. Proc. Lond. Math. Soc. (3)94, 302–350 (2007)

  47. Kerr D. (2004). Entropy and induced dynamics on state spaces. Geom. Funct. Anal. 14: 575–594

    Article  MATH  MathSciNet  Google Scholar 

  48. Kerr D. and Li H. (2005). Dynamical entropy in Banach spaces. Invent. Math. 162: 649–686

    Article  MATH  MathSciNet  Google Scholar 

  49. Kerr D. and Li H. (2006). Positive Voiculescu-Brown entropy in noncommutative toral automorphisms. Ergod. Theor. Dyn. Syst. 26: 1855–1866

    Article  MathSciNet  MATH  Google Scholar 

  50. Kishimoto A. (1995). The Rohlin property for automorphisms of UHF algebras. J. Reine Angew. Math. 465: 183–196

    MATH  MathSciNet  Google Scholar 

  51. Kishimoto A. (1996). The Rohlin property for shifts on UHF algebras and automorphisms of Cuntz algebras. J. Funct. Anal. 140: 100–123

    Article  MATH  MathSciNet  Google Scholar 

  52. Kishimoto A. and Robinson D.W. (1985). Dissipations, derivations, dynamical systems and asymptotic abelianness. J. Oper. Theory 13: 237–253

    MATH  MathSciNet  Google Scholar 

  53. Köhler A. (1995). Enveloping semigroups for flows. Proc. R. Irish Acad. Sect. A 95: 179–191

    MATH  Google Scholar 

  54. Li T.Y. and Yorke J.A. (1975). Period three implies chaos. Am. Math. Mon. 82: 985–992

    Article  MATH  MathSciNet  Google Scholar 

  55. Lindenstrauss E. (2001). Pointwise theorems for amenable groups. Invent. Math. 146: 259–295

    Article  MATH  MathSciNet  Google Scholar 

  56. Lindenstrauss E. and Weiss B. (2000). Mean topological dimension. Isr. J. Math. 115: 1–24

    MATH  MathSciNet  Google Scholar 

  57. McMahon D. and Wu T.S. (1981). Distal homomorphisms of nonmetric minimal flows. Proc. Am. Math. Soc. 82: 283–287

    Article  MATH  MathSciNet  Google Scholar 

  58. Mendelson, S., Vershynin, R.: Entropy, combinatorial dimensions and random averages. In: Computational Learning Theory (Sydney, 2002), pp. 14–28. Lecture Notes in Comput. Sci., 2375, Springer, Berlin (2002)

  59. Ollagnier, J Moulin: Ergodic Theory and Statistical Mechanics. Lecture Notes in Mathematics, 1115. Springer, Berlin (1985)

  60. Narnhofer H. (1992). Quantized Arnol’d cat maps can be entropic K-systems. J. Math. Phys. 33: 1502–1510

    Article  MATH  MathSciNet  Google Scholar 

  61. Neshveyev S.V. (2000). On the K-property of quantized Arnold cat maps. J. Math. Phys. 41: 1961–1965

    Article  MATH  MathSciNet  Google Scholar 

  62. Pajor A. (1983). C. R. Acad. Sci. Paris Sér. I Math. 296: 741–743

    MATH  MathSciNet  Google Scholar 

  63. Paterson, A.L.T.: Amenability. Mathematical Surveys and Monographs, 29. American Mathematical Society, Providence (1988)

  64. Petersen K.E. (1970). Disjointness and weak mixing of minimal sets. Proc. Am. Math. Soc. 24: 278–280

    Article  MATH  Google Scholar 

  65. Pisier, G.: Introduction to Operator Space Theory. London Math. Soc. Lecture Note Ser., 294. Cambridge University Press, Cambridge (2003)

  66. Pop C. and Smith R.R. (2004). Crossed products and entropy of automorphisms. J. Funct. Anal. 206: 210–232

    Article  MATH  MathSciNet  Google Scholar 

  67. Rørdam, M.: Classification of nuclear, simple C*-algebras. In: Classification of Nuclear C*-algebras. Entropy Operator Algebras, pp. 1–145. Springer, Berlin (2002)

  68. Rosenthal H.P. (1974). A characterization of Banach spaces containing l 1. Proc. Natl. Acad. Sci. USA 71: 2411–2413

    Article  MATH  Google Scholar 

  69. Rosenthal H.P. (1978). Some recent discoveries in the isomorphic theory of Banach spaces. Bull. Am. Math. Soc. 84: 803–831

    MATH  Google Scholar 

  70. Sauer N. (1972). On the density of families of sets. J. Comb. Theory Ser. A 13: 145–147

    Article  MATH  MathSciNet  Google Scholar 

  71. Shelah S. (1972). A combinatorial problem; stability and order for models and theories in infinitary languages. Pac. J. Math. 41: 247–261

    MATH  Google Scholar 

  72. Størmer E. (1970). The even CAR-algebra. Commun. Math. Phys. 16: 136–137

    Article  MATH  Google Scholar 

  73. Takesaki, M.: Theory of Operator Algebras I. Encyclopaedia of Mathematical Sciences, 124. Springer, Berlin (2002)

  74. Todorcevic, S.: Topics in Topology. Springer Lecture Notes in Mathematics, 1652. Springer, Berlin (1997)

  75. Tukia P. (1994). Convergence groups and Gromov’s metric hyperbolic spaces. N. Z. J. Math. 23: 157–187

    MATH  MathSciNet  Google Scholar 

  76. Veech W.A. (1977). Topological dynamics. Bull. Am. Math. Soc. 83: 775–830

    Article  MATH  MathSciNet  Google Scholar 

  77. de Vries, J.: Elements of Topological Dynamics. Mathematics and its Applications, 257. Kluwer, Dordrecht (1993)

  78. van der Woude J. (1985). Characterizations of (H)PI extensions. Pac. J. Math. 120: 453–467

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kerr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerr, D., Li, H. Independence in topological and C*-dynamics. Math. Ann. 338, 869–926 (2007). https://doi.org/10.1007/s00208-007-0097-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0097-z

Keywords

Navigation