Skip to main content
Log in

Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider quite general h-pseudodifferential operators on R n with small random perturbations and show that in the limit h → 0 the eigenvalues are distributed according to a Weyl law with a probabality that tends to 1. The first author has previously obtained a similar result in dimension 1. Our class of perturbations is different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Davies E.B. (2005). Semi-classical analysis and pseudospectra. J. Diff. Equ. 216(1): 153–187

    Article  MATH  Google Scholar 

  2. Dimassi, M., Sjöstrand, J.: Spectral asymptotics in the semi-classical limit, London Mathematical Society, Lecture Note Series, vol. 268 (1999)

  3. Dynkin E.M. (1975). An operator calculus based upon the Cauchy–Green formula. J. Soviet Math. 4(4): 329–334

    Article  Google Scholar 

  4. Embree M. and Trefethen L.N. (2005). Spectra and Pseudospectra. The Behaviour of Non-normal Matrices and operator. Princeton University Press, Princeton

    Google Scholar 

  5. Girko V.I. (1990). Theory of Random Determinants. Mathematics and its Applications. Kluwer, Dordrecht

    Google Scholar 

  6. Hager M. (2006). Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle. Ann. Fac. Sci. Toulouse Math. (6) 15(2): 243–280

    MathSciNet  Google Scholar 

  7. Hager M. (2006). Instabilité spectrale semiclassique d’opérateurs non-autoadjoints II. Ann. Henri Poincaré 7(6): 1035–1064

    Article  MathSciNet  MATH  Google Scholar 

  8. Hager M. (2007). Bound on the number of eigenvalues near the boundary of the pseudospectrum, Proc. Amer. Math. Soc. 135(12): 3867–3873

    Article  MathSciNet  MATH  Google Scholar 

  9. Helffer B. and Sjöstrand J. (1989). équation de Schrödinger avec champs magnétique et équation de Harper. Springer Lect. Notes Phys. 345: 118–197

    Article  Google Scholar 

  10. Melin A. and Sjöstrand J. (2002). Determinants of pseudodifferential operators and complex deformations of phase space. Methods Appl. Anal. 9(2): 177–237

    MathSciNet  MATH  Google Scholar 

  11. Sjöstrand J. (1974). Parametrices for pseudodifferential operators with multiple characteristics. Ark. f. Mat. 12(1): 85–130

    Article  MATH  Google Scholar 

  12. Sjöstrand J. and Zworski M. (2007). Elementary linear algebra for advanced spectral problems. Ann. Inst. Fourier 57(7): 2095–2141

    MATH  Google Scholar 

  13. Trefethen L.N. and Chapman S.J. (2004). Wave packet pseudomodes of twisted Toeplitz matrices. Comm. Pure Appl. Math. 57: 1233–1264

    Article  MathSciNet  MATH  Google Scholar 

  14. Weyl H. (1912). Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71(4): 441–479

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Sjöstrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hager, M., Sjöstrand, J. Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators. Math. Ann. 342, 177–243 (2008). https://doi.org/10.1007/s00208-008-0230-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-008-0230-7

Mathematics Subject Classification (2000)

Navigation