Skip to main content
Log in

On the distribution of imaginary parts of zeros of the Riemann zeta function, II

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We continue our investigation of the distribution of the fractional parts of αγ, where α is a fixed non-zero real number and γ runs over the imaginary parts of the non-trivial zeros of the Riemann zeta function. We establish some connections to Montgomery’s pair correlation function and the distribution of primes in short intervals. We also discuss analogous results for a more general L-function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chan T.H.: More precise pair correlation conjecture on the zeros of the Riemann zeta function. Acta Arith. 114(3), 199–214 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Davenport H.: Multiplicative Number Theory, 3rd edn. Springer, New York (2000)

    MATH  Google Scholar 

  3. Ford K., Zaharescu A.: On the distribution of imaginary parts of zeros of the Riemann zeta function. J. reine angew. Math. 579, 145–158 (2005)

    MATH  MathSciNet  Google Scholar 

  4. Fujii A.: On the zeros of Dirichlet L-functions, III. Trans. Am. Math. Soc. 219, 347–349 (1976)

    Article  MATH  Google Scholar 

  5. Gallagher P.X., Mueller J.H.: Primes and zeros in short intervals. J. reine angew. Math. 303/304, 205–220 (1978)

    MathSciNet  Google Scholar 

  6. Goldston D.A., Heath-Brown D.R.: A note on the differences between consecutive primes. Math. Ann. 266, 317–320 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gonek, S.M.: An explicit formula of Landau and its applications to the theory of the zeta-function, A tribute to Emil Grosswald: number theory and related analysis, pp. 395–413. Contemp. Math., vol. 143. American Mathematical Society, Providence (1993)

  8. Heath-Brown D.R.: Gaps between primes, and the pair correlation of zeros of the zeta-function. Acta Arith. 41, 85–99 (1982)

    MATH  MathSciNet  Google Scholar 

  9. Hlawka E.: Über die Gleichverteilung gewisser Folgen, welche mit den Nullstellen der Zetafunktionen zusammenhängen. Sitzungsber. Österr. Akad. Wiss., Math.–Naturnw. Kl. Abt. II 184, 459–471 (1975)

    MathSciNet  Google Scholar 

  10. Kaczorowski, J., Perelli, A.: The Selberg class: a survey, Number Theory in Progress, vol. II, pp. 953–992. de Gruyter, Berlin (1999)

  11. Kaczorowski, J., Perelli, A.: Nonexistence of L-functions of degree 1 < d < 2, preprint

  12. Landau E.: Über die Nullstellen der ζ-Funktion. Math. Ann. 71, 548–568 (1911)

    Article  Google Scholar 

  13. Luo W.: Zeros of Hecke L-functions associated with cusp forms. Acta Arith. 71(2), 139–158 (1995)

    MATH  MathSciNet  Google Scholar 

  14. Montgomery H.L.: The pair correlation of zeros of the zeta function. Proc. Sym. Pure Math. 24, 181–193 (1973)

    Google Scholar 

  15. Montgomery, H.L.: Ten lectures on the interface between analytic number theory and harmonic analysis. CBMS Regional Conference Series in Mathematics, vol. 84, xiv+220, pp. American Mathematical Society, Providence, RI (1994)

  16. Montgomery H.L., Soundararajan K.: Primes in short intervals. Commun. Math. Phys. 252, 589–617 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mueller, J.H.: On the difference between consecutive primes, Recent progress in analytic number theory, I, pp. 269–273. Academic Press, New York (1981)

  18. Murty, M.R., Perelli, A.: The Pair Correlation of Zeros of Functions in the Selberg Class. Int. Math. Res. Not. 10, 531–545 (1999)

    Article  MathSciNet  Google Scholar 

  19. Murty M.R., Zaharescu A.: Explicit formulas for the pair correlation of zeros of functions in the Selberg class. Forum Math. 14(1), 65–83 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Selberg A.: Contributions to the theory of the Riemann zeta-function. Arch. Math. Naturvid. 48, 89–155 (1946); Collected papers, vol. I, pp. 214–280. Springer, Berlin (1989)

  21. Selberg, A.: Contributions to the theory of Dirichlet’s L-functions, Skr. Norske Vid. Akad. Oslo. I. 1946, (1946), no. 3, 62 pp. Collected papers, vol. I, pp. 281–340. Springer, Berlin (1989)

  22. Selberg, A.: Old and new conjectures and results about a class of Dirichlet series. In: Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), Univ. Salerno (1992), pp. 367–385; Collected papers, vol. II, pp. 47–63. Springer, Berlin (1989)

  23. Vaaler J.: Some extremal functions in Fourier analysis. Bull. Am. Math. Soc. (N.S.) 12(2), 183–216 (1985)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Ford.

Additional information

The first author is supported by National Science Foundation Grant DMS-0555367. The second author is partially supported by the National Science Foundation and the American Institute of Mathematics (AIM). The third author is supported by National Science Foundation Grant DMS-0456615.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ford, K., Soundararajan, K. & Zaharescu, A. On the distribution of imaginary parts of zeros of the Riemann zeta function, II. Math. Ann. 343, 487–505 (2009). https://doi.org/10.1007/s00208-008-0280-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-008-0280-x

Mathematics Subject Classification (2000)

Navigation