Skip to main content
Log in

Global rigidity of holomorphic Riemannian metrics on compact complex 3-manifolds

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study compact complex 3-manifolds M admitting a (locally homogeneous) holomorphic Riemannian metric g. We prove the following: (i) If the Killing Lie algebra of g has a non trivial semi-simple part, then it preserves some holomorphic Riemannian metric on M with constant sectional curvature; (ii) If the Killing Lie algebra of g is solvable, then, up to a finite unramified cover, M is a quotient Γ\G, where Γ is a lattice in G and G is either the complex Heisenberg group, or the complex SOL group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benoist Y.: Actions propres sur les espaces homogènes réductifs. Ann. Math. 144, 315–347 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Benoist Y., Labourie F.: Sur les espaces homogènes modèles de variétés compactes. Publ. Math. IHES 76, 99–109 (1992)

    MATH  MathSciNet  Google Scholar 

  3. Boubel C., Mounoud P., Tarquini C.: Lorentzian foliations on 3-manifolds. Ergodic Theory Dyn. Syst. 26, 1339–1362 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Carrière Y.: Flots riemanniens, dans Structures transverses des feuilletages, Toulouse. Astérisque 116, 31–52 (1984)

    Google Scholar 

  5. Carrière Y.: Autour de la conjecture de L. Markus sur les variétés affines. Invent. Math. 95, 615–628 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. D’Ambra, G., Gromov, M.: Lectures on transformations groups: geometry and dynamics. In: Surveys in Differential Geometry (Cambridge), pp. 19–111. Leihigh University, Bethlehem (1990)

  7. Dumitrescu S.: Structures géométriques holomorphes sur les variétés complexes compactes. Ann. Sci. Ecole Norm. Sup. 34(4), 557–571 (2001)

    MATH  MathSciNet  Google Scholar 

  8. Dumitrescu S.: Métriques riemanniennes holomorphes en petite dimension. Ann. Inst. Fourier, Grenoble 51(6), 1663–1690 (2001)

    MATH  MathSciNet  Google Scholar 

  9. Dumitrescu S.: Homogénéité locale pour les métriques riemanniennes holomorphes en dimension 3. Ann. Instit. Fourier Grenoble 57(3), 739–773 (2007)

    MATH  MathSciNet  Google Scholar 

  10. Dumitrescu, S., Zeghib, A.: Géométries lorentziennes de dimension 3: classification et complétude, Arxiv math.DG/0703846

  11. Fried D., Goldman W.: Three-dimensional affine christallographic groups. Adv. Math. 47(1), 1–49 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ghys E.: Holomorphic Anosov systems. Invent. Math. 119(3), 585–614 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ghys E.: Déformations des structures complexes sur les espaces homogènes de \({(SL(2, \mathbb{C})}\) . J. Reine Angew. Math. 468, 113–138 (1995)

    MATH  MathSciNet  Google Scholar 

  14. Ghys E.: Flots d’Anosov dont les feuilletages stables sont différentiables. Ann. Sci. Ec. Norm. Sup. 20, 251–270 (1987)

    MATH  MathSciNet  Google Scholar 

  15. Goldman W.: Nonstandard Lorentz space forms. J. Diff. Geom. 21(2), 301–308 (1985)

    MATH  Google Scholar 

  16. Gromov, M.: Rigid transformation groups, Géométrie Différentielle. Bernard et Choquet-Bruhat, D., (ed.), Travaux en cours, Hermann, Paris, 33, pp. 65–141 (1988)

  17. Hwang J.-M., Mok N.: Uniruled projective manifolds with irreducible reductive G-structure. J. Reine Angew. Math. 490, 55–64 (1997)

    MATH  MathSciNet  Google Scholar 

  18. Inoue M., Kobayashi S., Ochiai T.: Holomorphic affine connections on compact complex surfaces. J. Fac. Sci. Univ. Tokyo 27(2), 247–264 (1980)

    MATH  MathSciNet  Google Scholar 

  19. Kirilov, A.: Eléments de la théorie des représentations. MIR (1974)

  20. Klingler B.: Complétude des variétés Lorentziennes à courbure sectionnelle constante. Math. Ann. 306, 353–370 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kobayashi S., Ochiai T.: Holomorphic structures modeled after hyperquadrics. Tôhoku Math. J. 34, 587–629 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kobayashi T., Yoshino T.: Compact Clifford-Klein form of symmetric spaces -revisited. Pure Appl. Math. Q. 1(3), 591–663 (2005)

    MATH  MathSciNet  Google Scholar 

  23. Kulkarni R., Raymond F.: 3-dimensional Lorentz space-forms and Seifert fiber spaces. J. Diff. Geom. 21(2), 231–268 (1985)

    MATH  MathSciNet  Google Scholar 

  24. Labourie, F.: Quelques résultats récents sur les espaces localement homogènes compacts. In: Symposia Mathematica (en l’honneur d’Eugenio Calabi), pp. 267–283 (1996)

  25. Lebrun C.: Spaces of complex null geodesics in complex-Riemannian geometry. Trans. Amer. Math. Soc. 278, 209–231 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lebrun C.: \({\mathcal {H}}\) -spaces with a cosmological constant. Proc. Roy. Soc. Lond. Ser. A 380(1778), 171–185 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mané R.: Quasi-Anosov diffeomorphisms and hyperbolic manifolds. Trans. Amer. Math. Soc. 229, 351–370 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  28. Markus L.: Cosmological models in differential geometry, mimeographed notes. University of Minnesota, Minneapolis (1962)

    Google Scholar 

  29. McKay, B.: Characteristic forms of complex Cartan geometries. Arxiv math. DG/0704.2555

  30. Molino, P.: Riemannian Foliations. Progress in Mathematics, Birkhauser, Boston (1988)

  31. Mostow G.: The extensibility of local Lie groups of transformations and groups on surfaces. Ann. Math. 52(2), 606–636 (1950)

    Article  MathSciNet  Google Scholar 

  32. Priska, J., Radloff, I.: Projective threefolds with holomorphic conformal structure. Internat. J. Math. 16(6), 595–607 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rahmani, S.: Métriques de Lorentz sur les groupes de Lie unimodulaires de dimension 3. J. Geom. Phys. 9, 295–302 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  34. Rahmani, N., Rahmani, S.: Lorentzian geometry of the Heisenberg group. Geom. Dedicata 118, 133–140 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Raghunathan M.: Discrete subgroups of Lie groups. Springer, New York (1972)

    MATH  Google Scholar 

  36. Salein, F.:Variétés anti-de Sitter de dimension 3 exotiques. Ann. Inst. Fourier Grenoble 50(1), 257–284 (2000)

    MATH  MathSciNet  Google Scholar 

  37. Thurston W.: The geometry and the topology of 3-manifolds. Princeton University Press, Princeton (1983)

    Google Scholar 

  38. Wolf, J.: Spaces of Constant Curvature. In: McGraw-Hill Series in Higher Math. (1967)

  39. Zeghib, A.: Killing fields in compact Lorentz 3-manifolds. J. Differ. Geom. 43, 859–894 (1996)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorin Dumitrescu.

Additional information

S. Dumitrescu was partially supported by the ANR Grant BLAN 06-3-137237.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumitrescu, S., Zeghib, A. Global rigidity of holomorphic Riemannian metrics on compact complex 3-manifolds. Math. Ann. 345, 53–81 (2009). https://doi.org/10.1007/s00208-009-0342-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-009-0342-8

Mathematics Subject Classification (2000)

Navigation