Skip to main content
Log in

Dynamics of the Ericksen–Leslie equations with general Leslie stress I: the incompressible isotropic case

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The Ericksen–Leslie model for nematic liquid crystals in a bounded domain with general Leslie and isotropic Ericksen stress tensor is studied in the case of a non-isothermal and incompressible fluid. This system is shown to be locally strongly well-posed in the \(L_p\)-setting, and a dynamical theory is developed. The equilibria are identified and shown to be normally stable. In particular, a local solution extends to a unique, global strong solution provided the initial data are close to an equilibrium or the solution is eventually bounded in the topology of the natural state manifold. In this case, the solution converges exponentially to an equilibrium, in the topology of the state manifold. The above results are proven without any structural assumptions on the Leslie coefficients and in particular without assuming Parodi’s relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkin, R., Sluchin, T., Stewart, I.W.: Reflections on the life and work of Frank Matthews Leslie. J. Non-Newton. Fluid Mech. 119, 7–23 (2004)

    Article  MATH  Google Scholar 

  2. Bothe, D., Prüss, J.: \(L^p\)-theory for a class of non-Newtonian fluids. SIAM J. Math. Anal. 39, 379–421 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chandrasekhar, S.: Liquid Crystals. Cambridge University Press, Cambridge (1992)

  4. Coutand, D., Shkoller, S.: Well-posedness of the full Ericksen-Leslie model of nematic liquid crystals. C. R. Acad. Sci. Paris Sér. I Math. 333, 919–924 (2001)

  5. DeGennes, P.G., Prost, J.: The Physics of Liquid Crystals. Oxford University Press, Oxford (1995)

  6. Denk, R., Hieber, M., Prüss, J.: \(\cal R\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc., 166 (2003)

  7. Ericksen, J.L.: Hydrostatic theory of liquid crystals. Arch. Ratio. Mech. Anal. 9, 371–378 (1962)

    MathSciNet  MATH  Google Scholar 

  8. Feireisl, E., Rocca, E., Schimperna, G.: On a non-isothermal model for nematic liquid crystals. Nonlinearity 24, 243–257 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feireisl, E., Frémond, M., Rocca, E., Schimperna, G.: A new approach to non-isothermal models for nematic liquid crystals. Arch. Ration. Mech. Anal. 205, 651–672 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feireisl, E., Rocca, E., Schimperna, G., Zarnescu, A.: Evolution of non-isothermal Landau-de Gemmes nematic liquid crystal flows with singular potential. arXiv:1207.1643

  11. Feireisl, E., Rocca, E., Schimperna, G., Zarnescu, A.: Nonisothermal nematic liquid crystal flows with Ball-Majumdar free energy. arXiv:1310.8474

  12. Frank, F.C.: On the theory of liquid crystals. Discuss. Faraday Soc. 25, 19–28 (1958)

    Article  Google Scholar 

  13. Hieber, M., Nesensohn, M., Prüss, J., Schade, K.: Dynamics of nematic lquid crystals: the quasilinear approach. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 397–408 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hieber, M., Prüss, J.: Thermodynamic consistent modeling and analysis of nematic liquid crystal flows. In: Springer Proc. Math. and Statistics (2016) (to appear)

  15. Hieber, M., Prüss, J.: Modeling and analysis of the Ericksen–Leslie equations for nematic liquid crystal flows. In: Giga, Y., Novotny, A. (eds.) Handbook of mathematical analysis in mechanics of viscous fluids. Springer, New York (to appear)

  16. Hong, M., Li, J., Xin, Z.: Blow-up criteria of strong solutions to the Ericksen-Leslie system in \({\mathbb{R}}^3\). Comm. Partial Differ. Equ. 39, 1284–1328 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, T., Lin, F., Liu, C., Wang, C.: Finite time singularities of the nematic liquid crystal flow in dimension three. Arch. Ration. Mech. Anal. 221, 1223–1254 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, J., Lin, F., Wang, C.: Regularity and existence of global solutions to the Ericksen-Leslie system in \({\mathbb{R}}^2\). Comm. Math. Phys. 331, 805–850 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Köhne, M., Prüss, J., Wilke, M.: On quasilinear parabolic evolution equations in weighted \(L_p\)-spaces. J. Evol. Equ. 10, 443–463 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. LeCrone, J., Prüss, J., Wilke, M.: On quasilinear parabolic evolution equations in weighted \(L^p\)-spaces II. J. Evol. Equ. 14, 509–533 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Leslie, F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin, F.: Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena. Commun. Pure Appl. Math. 42, 789–814 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin, F.: On nematic liquid crystals with variable degree of freedom. Commun. Pure Appl. Math. 44, 453–468 (1991)

    Article  MATH  Google Scholar 

  24. Lin, F., Liu, Ch.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48, 501–537 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin, F., Liu, Ch.: Existence of solutions for the Ericksen-Leslie system. Arch. Ration. Mech. Anal. 154, 135–156 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lin, F., Lin, J., Wang, C.: Liquid crystal flows in two dimensions. Arch. Ration. Mech. Anal. 197, 297–336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lin, F., Wang, C.: Recent developments of analysis for hydrodynamic flow of nematic liquid crystals. Philos. Trans. R. Soc. Lon. Ser. A, Math. Phys. Eng. Sci. 372, 20130361 (2014)

    Google Scholar 

  28. Ma, W., Gong, H., Li, J.: Global strong solutions to incompressible Ericksen-Leslie system in \({\mathbb{R}}^3\). Nonlinear Anal. 109, 230–235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Oseen, C.W.: The theory of liquid crystals. Trans. Faraday Soc. 29, 883–899 (1933)

    Article  MATH  Google Scholar 

  30. Parodi, O.: Stress tensor for a nematic liquid crystal. J. Physique 31, 581–584 (1970)

    Article  Google Scholar 

  31. Prüss, J.: Maximal regularity for evolution equations in \(L_p\)-spaces. Conf. Semin. Mat. Univ. Bari (2002) 285, 1–39 (2003)

  32. Prüss, J., Simonett, G.: Maximal regularity for evolution equations in weighted \(L_p\)-spaces. Arch. Math. (Basel) 82, 415–431 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Prüss, J., Simonett, G.: Moving Interfaces and Quasilinear Parabolic Evolution Equations. Monographs in Mathematics, vol. 105. Birkhäuser Basel (2016). doi:10.1007/978-3-319-27698-4

  34. Prüss, J., Simonett, G., Zacher, R.: On convergence of solutions to equilibria for quasilinear parabolic problems. J. Differ. Equ. 246, 3902–3931 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stewart, I.W.: The Static and Dynamic Continuum Theory of Liquid Crystals. The Liquid Crystal Book Series. Taylor and Francis, UK (2004)

    Google Scholar 

  36. Sun, H., Liu, Ch.: On energetic variational approaches in modeling the nematic liquid crystal flows. Disc. Cont. Dyn. Syst. 23, 455–475 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Triebel, H.: Theory of Function Spaces II. Birkhäuser, Basel (1992)

    Book  MATH  Google Scholar 

  38. Virga, E.G.: Variational theories for liquid crystals. Chapman-Hall, London (1994)

    Book  MATH  Google Scholar 

  39. Wang, C.: Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data. Arch. Ration. Mech. Anal. 200, 1–19 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, W., Zhang, P., Zhang, Z.: Well-posedness of the Ericksen-Leslie system. Arch. Ration. Mech. Anal. 210, 837–855 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wu, H., Xu, X., Liu, Ch.: On the general Ericksen-Leslie system: Parodi’s relation, well-posedness and stability. Arch. Ration. Mech. Anal. 208, 59–107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Hieber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hieber, M., Prüss, J. Dynamics of the Ericksen–Leslie equations with general Leslie stress I: the incompressible isotropic case. Math. Ann. 369, 977–996 (2017). https://doi.org/10.1007/s00208-016-1453-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1453-7

Mathematics Subject Classification

Navigation