Skip to main content
Log in

Non-Kähler manifolds and GIT-quotients

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Bosio generalized the construction by López de Medrano-Verjovsky- Meersseman (LVM) of a family of non-algebraic compact complex manifolds of any dimension. We describe how to construct the generalized family from certain Geometric Invariant Theory (GIT) quotients. We show that Bosio’s generalization parallels exactly the extension from Mumford’s GIT to the more general GIT developed by Białynicki-Birula and Świȩcicka. This point of view yields new results on the geometry of LVM and Bosio’s manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Białynicki-Birula A., Sommese A.J. (1986). A conjecture about compact quotients by tori. Adv. Stud. Pure Math. 8: 59–68

    Google Scholar 

  2. Białynicki-Birula, A., Świȩcicka, J.: On exotic orbit spaces of tori acting on projective varieties Group actions and invariant theory (Montreal, PQ, 1988), 25–30, CMS Conf. Proc., 10, Amer. Math. Soc., Providence, RI (1989)

  3. Białynicki-Birula A., Świȩcicka J. (1996). Open subsets of projective spaces with a good quotient by an action of a reductive group. Transform. Groups 1(3): 153–185

    Article  MathSciNet  Google Scholar 

  4. Białynicki-Birula A., Świȩcicka J. (1998). A recipe for finding open subsets of vector spaces with a good quotient. Colloq. Math. 77(1): 97–114

    MathSciNet  Google Scholar 

  5. Bosio F., Meersseman L. (2006). Real quadrics in \({\mathbb{C}^n}\) , complex manifolds and convex polytopes. Acta Math. 197: 53–127

    Article  MATH  MathSciNet  Google Scholar 

  6. Bosio F. (2001). Variétés complexes compactes : une généralisation de la construction de Meersseman et de López de Medrano-Verjovsky. Ann. Inst. Fourier 51: 1259–1297

    MATH  MathSciNet  Google Scholar 

  7. ElKacimi Alaoui A., Gmira B. (1997). Stabilité du caractère kählérien transverse. Isr. J. Math. 101: 323–347

    MathSciNet  Google Scholar 

  8. Grauert H. (1962). Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146:    331–368

    Article  MATH  MathSciNet  Google Scholar 

  9. Grauert H., Remmert R. (1956). Plurisubharmonische Funktionen in komplexen Räumen. Math. Z. 65: 175–194

    Article  MATH  MathSciNet  Google Scholar 

  10. Hamm, H.A.: Very good quotients of toric varieties, Real and complex singularities (Sao Carlos, 1998), pp. 61–75, Chapman & Hall/CRC Res. Notes Math. 412 (2000)

  11. Huybrechts, D.: Complex geometry. An introduction. Universitext, Springer, New York (2005)

  12. Kempf G., Knudsen F., Mumford D., Saint-Donat B. (1973). Toroidal Embeddings I. Lecture Notes in Mathematics 339. Springer, New York

    Google Scholar 

  13. Loeb J.J., Nicolau M. (1999). On the complex geometry of a class of non Kählerian manifolds. Isr. J. Math. 110: 371–379

    MATH  MathSciNet  Google Scholar 

  14. Lópezde Medrano S., Verjovsky A. (1997). A new family of complex, compact, non symplectic manifolds. Bol. Soc. Bras. Math. 28: 253–269

    Article  Google Scholar 

  15. Meersseman L. (2000). A new geometric construction of compact complex manifolds in any dimension. Math. Ann. 317: 79–115

    Article  MATH  MathSciNet  Google Scholar 

  16. Meersseman L., Verjovsky A. (2004). Holomorphic principal bundles over projective toric varieties. J. Reine Angew. Math. 572: 57–96

    MATH  MathSciNet  Google Scholar 

  17. Namikawa Y. (2002). Projectivity criterion of Moishezon spaces and density of projective symplectic varieties. Intern. J. Math. 13(2): 125–135

    Article  MATH  MathSciNet  Google Scholar 

  18. Orlik P. (1972). Seifert manifolds, Lecture Notes in Mathematics, vol. 291. Springer, New York

    Google Scholar 

  19. Varouchas J. (1989). Kähler spaces and proper open morphisms. Math. Ann. 283(1): 13–52

    Article  MATH  MathSciNet  Google Scholar 

  20. Wall C.T.C. (1980). Stability, pencils and polytopes. Bull. Lond. Math. Soc. 12(6): 401–421

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie Cupit-Foutou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cupit-Foutou, S., Zaffran, D. Non-Kähler manifolds and GIT-quotients. Math. Z. 257, 783–797 (2007). https://doi.org/10.1007/s00209-007-0144-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-007-0144-1

Keywords

Navigation