Skip to main content
Log in

Kaplansky classes and derived categories

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We put a monoidal model category structure on the category of chain complexes of quasi-coherent sheaves over a quasi-compact and semi-separated scheme X. The approach generalizes and simplifies the method used by the author in (Trans Am Math Soc 356(8) 3369–3390, 2004) and (Trans Am Math Soc 358(7), 2855–2874, 2006) to build monoidal model structures on the category of chain complexes of modules over a ring and chain complexes of sheaves over a ringed space. Indeed, much of the paper is dedicated to showing that in any Grothendieck category \(\mathcal{G}\), any nice enough class of objects \(\mathcal{F}\) induces a model structure on the category Ch(\(\mathcal{G}\)) of chain complexes. The main technical requirement on \(\mathcal{F}\) is the existence of a regular cardinal κ such that every object \(F \in \mathcal{F}\) satisfies the following property: Each κ-generated subobject of F is contained in another κ-generated subobject S for which \(S, F/S \in \mathcal{F}\). Such a class \(\mathcal{F}\) is called a Kaplansky class. Kaplansky classes first appeared in Enochs and López-Ramos (Rend Sem Mat Univ Padova 107, 67–79, 2002) in the context of modules over a ring R. We study in detail the connection between Kaplansky classes and model categories. We also find simple conditions to put on \(\mathcal{F}\) which will guarantee that our model structure is monoidal. We will see that in several categories the class of flat objects form such Kaplansky classes, and hence induce monoidal model structures on the associated chain complex categories. We will also see that in any Grothendieck category \(\mathcal{G}\), the class of all objects is a Kaplansky class which induces the usual (non-monoidal) injective model structure on Ch(\(\mathcal{G}\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J., Rosický, J.: Locally presentable and accessible categories. Number 189 in London Mathematical Society Lecture Note Series, Cambridge University Press (1994)

  2. Alonso Tarrío L., Jeremías López A. and Lipman J. (1997). Local homology and cohomology of schemes. Ann. Sci. École Norm. Sup. (4) 30: 1–39

    MATH  Google Scholar 

  3. Beke T. (2000). Sheafifiable homotopy model categories. Math. Proc. Camb. Phil. Soc. 129(3): 447–475

    Article  MATH  MathSciNet  Google Scholar 

  4. Bican L., Bashir R.El and Enochs E. (2001). All modules have flat covers. Bull. Lond. Math. Soc. 33(4): 385–390

    Article  MATH  Google Scholar 

  5. Borceux, F.: Handbook of categorical algebra. 1–3, Encyclopedia of mathematics and its applications. pp. 50–52. Cambridge University Press, Cambridge (1994)

  6. Conrad, B.: Grothendieck dualilty and base change. Lecture Notes in Mathematics, vol. 1750, Springer (2000)

  7. Eklof P.C. and Trlifaj J. (2001). How to make ext vanish. Bull. Lond. Math. Soc. 33(1): 41–51

    Article  MATH  MathSciNet  Google Scholar 

  8. Enochs E., Estrada S., García Rozas J.R. and Oyonarte L. (2004). Flat covers in the category of quasi-coherent sheaves over the projective line. Comm. Algebra 32: 1497

    Article  MATH  MathSciNet  Google Scholar 

  9. Enochs E. and Estrada S. (2005). Relative homological algebra in the category of quasi-coherent sheaves. Adv. Math. 194(2): 284–295

    Article  MATH  MathSciNet  Google Scholar 

  10. Enochs, E., Jenda, O.: Relative homological algebra. De Gruyter expositions in mathematics no. 30, Walter De Gruyter, New York (2001)

  11. Enochs E. and López-Ramos J.A. (2002). Kaplansky classes. Rend. Sem. Mat. Univ. Padova. 107: 67–79

    MATH  MathSciNet  Google Scholar 

  12. Enochs E. and Oyonarte L. (2001). Flat covers and cotorsion envelopes of sheaves. Proc. Am. Math. Soc. 130(5): 1285–1292

    Article  MathSciNet  Google Scholar 

  13. Gillespie J. (2004). The flat model structure on Ch(R). Trans. Am. Math. Soc. 356(8): 3369–3390

    Article  MATH  MathSciNet  Google Scholar 

  14. Gillespie J. (2006). The flat model structure on complexes of sheaves. Trans. Am. Math. Soc. 358(7): 2855–2874

    Article  MATH  MathSciNet  Google Scholar 

  15. Hartshorne R. (1977). Algebraic Geometry. Grauate Texts in Mathematics vol. 52. Springer, New York

    Google Scholar 

  16. Hovey M. (2002). Cotorsion theories, model category structures and representation theory. Mathematische Zeitschrift 241: 553–592

    Article  MATH  MathSciNet  Google Scholar 

  17. Hovey, M.: Model categories. Mathematical surveys and monographs. Am. Math. Soc. 63 (1999)

  18. Hovey, M., Palmieri, J., Strickland, N.: Axiomatic stable homotopy theory. Mem. Am. Math. Soc., 128(610) (1997)

  19. Kaplansky I. (1958). Projective modules. Ann. Math. 68(2): 372–377

    Article  MathSciNet  Google Scholar 

  20. Lam T.Y. (1999). Lectures on modules and rings. Graduate texts in mathematics, vol. 189. Springer, New York

    Google Scholar 

  21. Lang S. (1997). Algebra. Addison-Wesley, New York

    Google Scholar 

  22. Litaka S. (1982). Algebraic geometry, graduate texts in mathematics, vol. 76. Springer, New York

    Google Scholar 

  23. May J.P. (2001). The additivity of traces in triangulated categories. Adv. Math. 163(1): 34–73

    Article  MATH  MathSciNet  Google Scholar 

  24. Murfet, D.: Derived categories of quasi-coherent sheaves. online at www.therisingsea.org

  25. Quillen, D.G.: Homotopical algebra. Lecture Notes in Mathematics no. 43, Springer (1967)

  26. Schwede S. and Shipley B.E. (2000). Algebras and modules in monoidal model categories. Proc. Lond. Math. Soc. 80(2): 491–511

    Article  MATH  MathSciNet  Google Scholar 

  27. Stenström, B.: Rings of quotients. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen Band 217, Springer, New York (1975)

  28. Thomason, R.W., Trobaugh, T.: Appendix B of Higher algebraic K-theory of schemes and of derived categories, The Grothendieck Festschrift, vol. III, pp. 409–417, Progr. Math., 88 (1990)

  29. Weibel C.A. (1994). An introduction to homological algebra. Cambridge studies in advanced mathematics, vol. 38. Cambridge University Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Gillespie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillespie, J. Kaplansky classes and derived categories. Math. Z. 257, 811–843 (2007). https://doi.org/10.1007/s00209-007-0148-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-007-0148-x

Mathematics Subject Classification (2000)

Navigation