Skip to main content
Log in

Riemannian supergeometry

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Motivated by Zirnbauer in J Math Phys 37(10):4986–5018 (1996), we develop a theory of Riemannian supermanifolds up to a definition of Riemannian symmetric superspaces. Various fundamental concepts needed for the study of these spaces both from the Riemannian and the Lie theoretical viewpoint are introduced, e.g., geodesics, isometry groups and invariant metrics on Lie supergroups and homogeneous superspaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baguis P. and Stavracou T. (2002). Normal Lie subsupergroups and non-Abelian supercircles. Int. J. Math. Math. Sci. 30(10): 581–591

    Article  MATH  MathSciNet  Google Scholar 

  2. Ballmann, W.: Automorphism groups. Lecture notes. http://www.math.uni-bonn.de/people/hwbllmnn/archiv/autmor00.ps, accessed on April 7, (2000)

  3. Batchelor M. (1979). The structure of supermanifolds. Trans. Am. Math. Soc. 253: 329–338

    Article  MATH  MathSciNet  Google Scholar 

  4. Berger M. (1957). Les espaces symétriques non compacts. Ann. Sci. Ecole Norm. Sup. 74: 85–177

    MathSciNet  Google Scholar 

  5. Berezin F.A. (1987). Introduction to Superanalysis. Reidel, Dordrecht

    MATH  Google Scholar 

  6. Boyer C.P. and Sánchez O.A. (1980). Valenzuela, Lie supergroup actions on supermanifolds. Trans. Am. Math. Soc. 323: 151–175

    Article  Google Scholar 

  7. Cahen, M., Parker, M.: Pseudo-Riemannian symmetric spaces. Mem. Am. Math. Soc. 24(229), iv+108 pp (1980)

    Google Scholar 

  8. Cariñena, J.F., Figueroa H.: Hamiltonian versus Lagrangian formulation of supermechanics. J. Phys. A Math. Gen. 30, 2705–2724

  9. Cortés, V.: Odd Riemannian symmetric spaces associated to four-forms, to appear in Math. Scand

  10. DeWitt B. (1992). Supermanifolds, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  11. Deligne, P., Morgan, J.W.: Notes on supersymmetry (following Joseph Bernstein). Quantum Fields and Strings: A Course for Mathematicians, Vols. 1, 2 (Princeton, NJ, 1996/1997), pp. 41–97. American Mathematical Society, Providence (1999)

  12. Kath, I., Olbrich, M.: On the structure of pseudo-Riemannian symmetric spaces. arXiv:math.DG/0408249

  13. Kostant, B.: Graded manifolds, graded Lie theory, and prequantization, Differential Geometrical Methods in Mathematical Physics (Proc. Sympos., Univ. Bonn, Bonn, 1975), Lecture Notes in Mathematics, vol. 570, pp. 177–306 Springer, Berlin (1977)

  14. Koszul, J.L.: Graded manifolds and graded Lie algebras. In: Proceedings of the International Meeting on Geometry and Physics (Bologna), Pitagora, pp. 71–84 (1982)

  15. Leites, D.A.: Introduction to the theory of supermanifolds. Uspekhi Mat. Nauk 35(1), 3–57 (1980), translated in Russian Math. Surveys, 35(1), 1–64 (1980)

  16. Manin, Yu.I.: Gauge Field Theory and Complex Geometry, Grundlehren. First appeared as Kalibrovochnye polya i kompleksnaya geometriya, Nauka, Moscow 1984, vol. 289. Springer, Heidelberg (1988)

  17. Monterde, J., Muñoz Masqué, J.: Variational problems on graded manifolds. In: Gotay, M.J., Marsden, J.E., Moncrief, V. (eds) Proceedings of the 1991 Joint Summer Research Conference on Mathematical Aspects of Classical Field Theory, Seattle, Contemp. Math. vol. 132, pp. 551–571. American Mathematical Society, Providence (1991)

  18. Monterde J. and Sánchez-Valenzuela O.A. (1996). The exterior derivative as a Killing vector field. Israel J. Math. 93: 157–170

    Article  MATH  MathSciNet  Google Scholar 

  19. Monterde J. and Sánchez-Valenzuela O.A. (1997). Graded metrics adapted to splittings. Israel J. Math. 99: 231–270

    Article  MATH  MathSciNet  Google Scholar 

  20. Montgomery, D.L. Zippin: Topological Transformation Groups, 3rd Printing. Interscience, New York (1965)

  21. Onishchik A.L. (1994). Flag supermanifolds, their automorphisms and deformations. In: Sophus Lie Memorial Conference (Oslo 1992), pp 289–302. Scand. University Press, Oslo

  22. Petersen P. (1998). Riemannian Geometry. Springer, New York

    MATH  Google Scholar 

  23. Scheunert M. (1979). The Theory of Lie Superalgebras, Lecture Notes in Mathematics, vol. 716. Springer, Berlin

    Google Scholar 

  24. Schmitt, T.: Super differential geometry, Akademie der Wissenschaften der DDR, Institut für Mathematik, report R-MATH-05/84, Berlin (1984)

  25. Serganova V. (1983). Classification of real simple Lie superalgebras and symmetric superspaces. Funct. Anal. Appl. 17(3): 200–207

    Article  MATH  MathSciNet  Google Scholar 

  26. Stavracou T. (1998). Theory of connections of graded principal bundles. Rev. Math. Phys. 10(1): 47–79

    Article  MATH  MathSciNet  Google Scholar 

  27. Varadarajan, V.S.: Supersymmetry for Mathematicians: An Introduction. Courant Lecture Notes, vol. 11. American Mathematical Society, Providence (2004)

  28. Zirnbauer M.R. (1996). Riemannian symmetric superspaces and their origin in random-matrix theory. J. Math. Phys. 37(10): 4986–5018

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Goertsches.

Additional information

Research supported by the DFG, SFB TR/12 “Symmetries and Universality in Mesoscopic Systems”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goertsches, O. Riemannian supergeometry. Math. Z. 260, 557–593 (2008). https://doi.org/10.1007/s00209-007-0288-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-007-0288-z

Keywords

Navigation