Skip to main content
Log in

On Lagrangian submanifolds in complex hyperquadrics and isoparametric hypersurfaces in spheres

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The n-dimensional complex hyperquadric is a compact complex algebraic hypersurface defined by the quadratic equation in the (n+1)-dimensional complex projective space, which is isometric to the real Grassmann manifold of oriented 2-planes and is a compact Hermitian symmetric space of rank 2. In this paper, we study geometry of compact Lagrangian submanifolds in complex hyperquadrics from the viewpoint of the theory of isoparametric hypersurfaces in spheres. From this viewpoint we provide a classification theorem of compact homogeneous Lagrangian submanifolds in complex hyperquadrics by using the moment map technique. Moreover we determine the Hamiltonian stability of compact minimal Lagrangian submanifolds embedded in complex hyperquadrics which are obtained as Gauss images of isoparametric hypersurfaces in spheres with g(=  1, 2, 3) distinct principal curvatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amarzaya A. and Ohnita Y. (2003). Hamiltonian stability of certain minimal Lagrangian submanifolds in complex projective spaces. Tohoku Math. J. 55: 583–610

    Article  MATH  MathSciNet  Google Scholar 

  2. Amarzaya, A., Ohnita, Y.: Hamiltonian stability of certain symmetric R-spaces embedded in complex Euclidean spaces. Tokyo Metropolitan University (2002, preprint)

  3. Amarzaya, A., Ohnita, Y.: Hamiltonian stability of parallel Lagrangian submanifolds embedded in complex space forms (in preparation)

  4. Asoh, T.: Compact transformation groups on Z 2-cohomology spheres with orbits of codimension 1. Hiroshima Math. J. 11, 571–616 (1981). Supplement to “Compact transformation groups on Z 2-cohomology spheres with orbits of codimension 1”. Hiroshima Math. J. 13, 647–652 (1983)

    Google Scholar 

  5. Bedulli, L., Gori, A.: Homogeneous Lagrangian submanifolds. math.DG/0604169 (to appear)

  6. Bedulli L. and Gori A. (2007). A Hamiltonian stable minimal Lagrangian submanifolds of projective spaces with nonparallel second fundamental form. Transformation Groups 12: 611–617. math.DG/0603528

    Article  MATH  MathSciNet  Google Scholar 

  7. Biliotti, L.: Hamiltonian actions and homogeneous Lagrangian submanifolds. math.DG/0605591 (to appear)

  8. Bourbaki, N.: Eléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Actualités Scientifiques et Industrielles, vol. 1337. Hermann, Paris (1968)

  9. Castro I. and Urbano F. (2007). Minimal Lagrangian surfaces in S 2  ×  S 2. Commun. Anal. Geom. 15: 217–248

    MATH  MathSciNet  Google Scholar 

  10. Cecil, T., Chi, Q.-S., Jensen, G.R.: Isoparametric hypersurfaces with four principal curvatures. math. DG/0402272. Ann. Math (to appear)

  11. Dazord, P: Sur la géometrie des sous-fibres et des feuilletages lagrangiens. (French) [On the geometry of subbundles and Lagrange foliations] Ann. Sci. École Norm. Sup. (4) 14 (1981), (4), 465–480 (1982)

  12. Ferus D., Karcher H. and Münzner H.F. (1981). Cliffordalgebren und neue isoparametrische Hyperflächen. Math. Z. 177: 479–502

    Article  MATH  MathSciNet  Google Scholar 

  13. Guillemin, V., Sjamaar, R.: Convexity Properties of Hamiltonian Group Actions. CRM Monograph Series, vol. 26. American Mathematical Society, Providence (2005)

  14. Helgason S. (1978). Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press Inc., New York

    MATH  Google Scholar 

  15. Hsiang W.-Y. and Lawson H.B. Jr (1971). Minimal submanifolds of low cohomogeneity. J. Diff. Geom. 5: 1–38

    MATH  MathSciNet  Google Scholar 

  16. Kirwan F. (1984). Convexity of properties of the moment mappings, III. Invent. Math. 77: 547–552

    Article  MATH  MathSciNet  Google Scholar 

  17. Kobayashi S. and Nomizu K. (1963, 1969). Foundations of Differential Geometry I, II. Wiley-Interscience, New York

  18. Kotani M. (1985). The first eigenvalue of homogeneous minimal hypersurfaces in a unit sphere S n+1(1). Tohoku Math. J. 37: 523–532

    Article  MATH  MathSciNet  Google Scholar 

  19. McKay, W.G., Patera, J.: Tables of dimensions, indices, and branching rules for representations of simple Lie algebras. Lecture Notes in Pure and Applied Mathematics, vol. 69. Marcel Dekker Inc., New York (1981)

  20. Münzner H.F. (1980). Isoparametrische hyperfläche in sphären. Math. Ann. 251: 57–71

    Article  MATH  MathSciNet  Google Scholar 

  21. Münzner H.F. (1981). Isoparametrische hyperfläche in sphären, II. Math. Ann. 256: 215–232

    Article  MATH  MathSciNet  Google Scholar 

  22. Muto H. (1988). The first eigenvalue of the Laplacian of an isoparametric minimal hypersurface in a unit sphere. Math. Z. 197: 531–549

    Article  MATH  MathSciNet  Google Scholar 

  23. Muto H., Ohnita Y. and Urakawa H. (1984). Homogeneous minimal hypersurfaces in the unit spheres and the first eigenvalues of their Laplacian. Tohoku Math. J. 36: 253–267

    Article  MATH  MathSciNet  Google Scholar 

  24. Naitoh H. (1981). Totally real parallel submanifolds in P n(c). Tokyo J. Math. 4: 279–306

    MATH  MathSciNet  Google Scholar 

  25. Naitoh H. (1983). Parallel submanifolds of complex space forms, I. Nagoya Math. J. 90: 85–117

    MATH  MathSciNet  Google Scholar 

  26. Naitoh H. (1983). Parallel submanifolds of complex space forms, II. Nagoya Math. J. 91: 119–149

    MATH  MathSciNet  Google Scholar 

  27. Naitoh H. and Takeuchi M. (1982). Totally real submanifolds and symmetric bounded domains. Osaka Math. J. 19: 717–731

    MATH  MathSciNet  Google Scholar 

  28. Oh Y.-G. (1990). Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds. Invent. Math. 101: 501–519

    Article  MATH  MathSciNet  Google Scholar 

  29. Oh Y.-G. (1991). Tight Lagrangian submanifolds in C P n. Math. Z. 207: 409–416

    Article  MATH  MathSciNet  Google Scholar 

  30. Oh Y.-G. (1993). Volume minimization of Lagrangian submanifolds under Hamiltonian deformations. Math. Z. 212: 175–192

    Article  MATH  MathSciNet  Google Scholar 

  31. Oh Y.-G. (1994). Mean curvature vector and symplectic topology of Lagrangian submanifolds in Einstein-Kähler manifolds. Math. Z. 216: 471–482

    Article  MATH  MathSciNet  Google Scholar 

  32. Ohnita Y. (2007). Stability and rigidity of special Lagrangian cones over certain minimal Legendrian orbits. Osaka J. Math. 44(2): 305–334

    MATH  MathSciNet  Google Scholar 

  33. Ozeki H. and Takeuchi M. (1975). On some types of isoparametric hypersurfaces in spheres I. Tohoku Math. J. 27(2): 515–559

    Article  MATH  Google Scholar 

  34. Ozeki H. and Takeuchi M. (1976). On some types of isoparametric hypersurfaces in spheres II. Tohoku Math. J. 28(2): 7–55

    Article  MATH  Google Scholar 

  35. Palmer B. (1994). Buckling eigenvalues, Gauss maps and Lagrangian submanifolds. Diff. Geom. Appl. 4: 391–403

    Article  MATH  MathSciNet  Google Scholar 

  36. Palmer B. (1997). Hamiltonian minimality and Hamiltonian stability of Gauss maps. Diff. Geom. Appl. 7: 51–58

    Article  MATH  MathSciNet  Google Scholar 

  37. Sato M. and Kimura T. (1977). A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J. 65: 1–155

    MATH  MathSciNet  Google Scholar 

  38. Takagi, R., Takahashi, T.: On the principal curvatures of homogeneous hypersurfaces in a unit sphere. Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 469–481 (1972)

  39. Takeuchi M. (1984). Stability of certain minimal submanifolds of compact Hermitian symmetric spaces. Tohoku Math. J. 36(2): 293–314

    Article  MATH  MathSciNet  Google Scholar 

  40. Yamaguchi S. (1979). Spectra of flag manifolds. Mem. Fac. Sci. Kyushu Univ. 33: 95–112

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Ohnita.

Additional information

Dedicated to Professor Hajime Urakawa on his sixtieth birthday.

H. Ma was partially supported by NSFC grant No. 10501028, SRF for ROCS, SEM and NKBRPC No. 2006CB805905. Y. Ohnita was partially supported by JSPS Grant-in-Aid for Scientific Research (A) No. 17204006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, H., Ohnita, Y. On Lagrangian submanifolds in complex hyperquadrics and isoparametric hypersurfaces in spheres. Math. Z. 261, 749–785 (2009). https://doi.org/10.1007/s00209-008-0350-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-008-0350-5

Mathematics Subject Classification (2000)

Navigation