Skip to main content
Log in

On the log-concavity of Hilbert series of Veronese subrings and Ehrhart series

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

For every positive integer n, consider the linear operator U n on polynomials of degree at most d with integer coefficients defined as follows: if we write \({\frac{h(t)}{(1 - t)^{d + 1}}=\sum_{m \geq 0} g(m) \, t^{m}}\) , for some polynomial g(m) with rational coefficients, then \({\frac{{\rm{U}}_{n}h(t)}{(1- t)^{d+1}} = \sum_{m \geq 0}g(nm) \, t^{m}}\) . We show that there exists a positive integer n d , depending only on d, such that if h(t) is a polynomial of degree at most d with nonnegative integer coefficients and h(0) = 1, then for nn d , U n h(t) has simple, real, negative roots and positive, strictly log concave and strictly unimodal coefficients. Applications are given to Ehrhart δ-polynomials and unimodular triangulations of dilations of lattice polytopes, as well as Hilbert series of Veronese subrings of Cohen–Macauley graded rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Athanasiadis, C.A.: h*-vectors, Eulerian polynomials and stable polytopes of graphs. Electron. J. Combin. 11(2) (2004/2006), Research Paper 6, 13 pp. (electronic)

  2. Backelin, J.: On the rates of growth of the homologies of Veronese subrings, algebra, algebraic topology and their interactions (Stockholm, 1983). Lecture Notes in Math., vol. 1183, pp. 79–100. Springer, Berlin (1986)

  3. Beck, M., De Loera, J.A., Develin, M., Pfeifle, J., Stanley, R.P.: Coefficients and roots of Ehrhart polynomials, Integer points in polyhedra—geometry, number theory, algebra, optimization. Contemp. Math., vol. 374, pp. 15–36. American Mathematical Society, Providence (2005)

  4. Beck M., Robins S.: Computing the continuous discretely, Undergraduate Texts in Mathematics. Springer, New York (2007)

    Google Scholar 

  5. Betke U., McMullen P.: Lattice points in lattice polytopes. Monatsh. Math. 99(4), 253–265 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brenti, F., Welker, V.: The Veronese construction for formal power series and graded algebras. Adv. Appl. Math. (2007, to appear) arXiv:0712.2645

  7. Brenti F., Welker V.: f-vectors of barycentric subdivisions. Math. Z. 259(4), 849–865 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bruns, W., Gubeladze, J.: Polytopes, Rings and K-theory. Springer, Heidelberg (to appear)

  9. Bruns W., Gubeladze J.: Unimodular covers of multiples of polytopes. Doc. Math. 7, 463–480 (2002) (electronic)

    MATH  MathSciNet  Google Scholar 

  10. Bruns W., Gubeladze J., Trung N.V.: Normal polytopes, triangulations, and Koszul algebras. J. Reine Angew. Math. 485, 123–160 (1997)

    MATH  MathSciNet  Google Scholar 

  11. Bruns W., Herzog J.: Cohen-Macaulay rings, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  12. Comtet L.: Advanced Combinatorics, enlarged edn. D. Reidel Publishing Co., Dordrecht (1974)

    Google Scholar 

  13. Ehrhart E.: Sur les polyèdres rationnels homothétiques à n dimensions. C. R. Acad. Sci. Paris 254, 616–618 (1962)

    MATH  MathSciNet  Google Scholar 

  14. Eisenbud D., Reeves A., Totaro B.: Initial ideals, Veronese subrings, and rates of algebras. Adv. Math. 109(2), 168–187 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gil J.B., Robins S.: Hecke operators on rational functions. I. Forum Math. 17(4), 519–554 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hibi T.: Some results on Ehrhart polynomials of convex polytopes. Discrete Math. 83(1), 119–121 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kantor J.-M., Sarkaria K.S.: On primitive subdivisions of an elementary tetrahedron. Pacific J. Math. 211(1), 123–155 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kempf G., Knudsen F.F., Mumford D., Saint-Donat B.: Toroidal embeddings. I. Lecture Notes in Mathematics, vol. 339. Springer, Berlin (1973)

    Google Scholar 

  19. Lagarias J.C., Ziegler G.M.: Bounds for lattice polytopes containing a fixed number of interior points in a sublattice. Can. J. Math. 43(5), 1022–1035 (1991)

    MATH  MathSciNet  Google Scholar 

  20. Lee, C.W.: Subdivisions and triangulations of polytopes. Handbook of Discrete and Computational Geometry. CRC Press Ser. Discrete Math. Appl., pp. 271–290. CRC, Boca Raton (1997)

  21. Marden, M.: Geometry of polynomials, 2nd edn. Mathematical Surveys, No. 3. American Mathematical Society, Providence (1966)

  22. Stanley R.P.: Decompositions of rational convex polytopes. Ann. Discrete Math. 6, 333–342 (1980)

    Article  MathSciNet  Google Scholar 

  23. Stapledon, A.: Inequalities and Ehrhart δ-vectors. Trans. Amer. Math. Soc. (to appear) arXiv:0711.4382

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Beck.

Additional information

The authors would like to thank Alexander Barvinok, Jesus De Loera, Sergey Fomin, Joseph Gubeladze, Mircea Mustaţǎ, Sam Payne, John Stembridge, Volkmar Welker, and an anonymous referee for useful discussions and helpful suggestions. M. Beck was partially supported by the NSF (research grant DMS-0810105), and A. Stapledon was partially supported by an Eleanor Sophia Wood travelling scholarship from the University of Sydney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, M., Stapledon, A. On the log-concavity of Hilbert series of Veronese subrings and Ehrhart series. Math. Z. 264, 195–207 (2010). https://doi.org/10.1007/s00209-008-0458-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-008-0458-7

Mathematics Subject Classification (2000)

Navigation