Skip to main content
Log in

On \(L^\infty \)-BMO estimates for derivatives of the Stokes semigroup

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider the Stokes equations in a class of domains that we will call admissible domains including bounded domains, the half space and exterior domains. We will prove new \(L^\infty \) estimates for derivatives of velocity and pressure. The estimates will be given in terms of a BMO-type norm of the initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, K.: Some uniqueness result of the Stokes flow in a half space in a space of bounded functions. Discrete Contin. Dyn. Syst. Ser. S 7, 887–900 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abe, K., Giga, Y.: Analyticity of the Stokes semigroup in spaces of bounded functions. Acta Math. 211, 1–46 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abe, K., Giga, Y.: The \(L^\infty \)-Stokes semigroup in exterior domains. J. Evol. Equ. 14, 1–28 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abe, K., Giga, Y., Hieber, M.: Stokes resolvent estimates in spaces of bounded functions. Ann. Sci Éc. Norm. Supér. 4(48), 537–559 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Abe, K., Giga, Y., Schade, K., Suzuki, T.: On the Stokes semigroup in some non-Helmholtz domains. Arch. Math. 104, 177–187 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bolkart, M., Hieber, M.: Pointwise upper bounds for the solution of the Stokes equation on \(L^\infty _\sigma (\varOmega )\) and applications. J. Funct. Anal. 268, 1678–1710 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carpio, A.: Large-time behavior in incompressible Navier–Stokes Equations. SIAM J. Math. Anal. 27, 449–475 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chung, S.Y.: Uniqueness in the Cauchy problem for the heat equation. Proc. Edinb. Math. Soc. 42, 455–468 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Desch, W., Hieber, M., Prüss, J.: \(L^p\)-theory of the Stokes equation in a half space. J. Evol. Equ. 1, 115–142 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Farwig, R., Kozono, H., Sohr, H.: An \(L^q\)-approach to Stokes and Navier–Stokes equations in general domains. Acta Math. 195, 21–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Farwig, R., Kozono, H., Sohr, H.: On the Helmholtz decomposition in general unbounded domains. Arch. Math. 88, 239–248 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Farwig, R., Kozono, H., Sohr, H.: On the Stokes operator in general unbounded domains. Hokkaido Math. J. 38, 111–136 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fefferman, C., Stein, E.M.: \(H^p\) spaces of several variables. Acta Math. 129, 137–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  14. Geissert, M., Heck, H., Hieber, M., Sawada, O.: Weak Neumann implies Stokes. J. Reine Angew. Math. 669, 75–100 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Giga, M.-H., Giga, Y., Saal, J.: Nonlinear Partial Differential Equations. Asymptotic Behavior of Solutions and Self-Similar Solutions. Progress in Nonlinear Differential Equations and Their Applications, vol. 79. Birkhäuser Boston, Inc., Boston, MA (2010)

  16. Giga, Y.: Analyticity of the semigroup generated by the Stokes operator in \(L^r\) spaces. Math Z. 178, 297–329 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giga, Y., Matsui, S., Shimizu, Y.: On estimates in Hardy spaces for the Stokes flow in a half space. Math. Z. 231, 383–396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften, vol. 24. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  19. Hieber, M., Maremonti, P.: Bounded Analyticity of the Stokes Semigroup on Spaces of Bounded Functions. In: Recent Advances in Fluid Mechanics. Series Advances in Math. Fluid Mechanics, Birkhäuser, Basel, pp 275–289 (2016)

  20. Krantz, S.G., Parks, H.R.: The Implicit Function Theorem. History, Theory, and Applications. Birkhäuser Boston, Inc, Boston, MA (2002)

    MATH  Google Scholar 

  21. Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence, RI (1968)

    Google Scholar 

  22. Maremonti, P.: On the Stokes problem in exterior domains: the maximum modulus theorems. Discrete Contin. Dyn. Syst. 34, 2135–2171 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miyachi, A.: \(H^p\) spaces over open subsets of \(R^n\). Stud. Math. 95, 205–228 (1990)

    MathSciNet  MATH  Google Scholar 

  24. Miyakawa, T.: The Helmholtz decomposition of vector fields in some unbounded domains. Math. J. Toyama Univ. 17, 115–149 (1994)

    MathSciNet  MATH  Google Scholar 

  25. Shimizu, Y.: Weak-type \(L^\infty \)-BMO Estimate of First-Order Space Derivatives of Stokes Flow in a Half Space, Graduate School of Mathematical Sciences, the University of Tokyo, UTMS Preprint Series 2003-44. http://kyokan.ms.u-tokyo.ac.jp/users/preprint/pdf/2003-44. Accessed 15 Jan 2015 (2003)

  26. Solonnikov, V.A.: On nonstationary Stokes problem and Navier–Stokes problem in half-space with initial data nondecreasing at infinity. J. Math. Sci. 114, 1726–1740 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tanabe, H.: Functional Analytic Methods for Partial Differential Equations. Monographs and Textbooks in Pure and Applied Mathematics, vol. 204. Marcel Dekker, Inc, New York, NY (1997)

    Google Scholar 

  28. von Below, L.: The Stokes and Navier-Stokes Equations in Layer Domains with and Without a Free Surface. Ph.D. Thesis, TU Darmstadt (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bolkart.

Additional information

This work was partly supported by the Japan Society for the Promotion of Science (JSPS) and the German Research Foundation through the Japanese-German Graduate Externship and International Research Training Group 1529 on Mathematical Fluid Dynamics. The second author is partly supported by JSPS through Grants Nos. 26220702 (Kiban S), 23244015 (Kiban A) and 25610025 (Houga).

Appendix: \(L^\infty \)-BMO estimate for the heat semigroup

Appendix: \(L^\infty \)-BMO estimate for the heat semigroup

In this section we will give a simple proof of (1.2) for the reader’s convenience.

Theorem 7.1

For a given \(v_0\in BMO (\mathbb {R}^n)\) (\(n\ge 1\)) the \(L^\infty \)-norm of \(\nabla G_t*v_0\) is estimated as

$$\begin{aligned} t^{1/2}\Vert \nabla G_t*v_0\Vert _\infty \le C_* [v_0]_{ BMO }\quad (t>0) \end{aligned}$$

with a constant \(C_*\) depending only on n.

Proof

It suffices to prove that

$$\begin{aligned} t^{1/2}\Vert \nabla G_t*u_0\Vert _{\mathcal {H}^1}\le C\Vert u_0\Vert _1 \end{aligned}$$
(7.1)

for \(u_0\in L^1(\mathbb {R}^n)\) since \((\mathcal {H}^1)^*= BMO \) by [13], where \(\mathcal {H}^1=\mathcal {H}^1(\mathbb {R}^n)\) denotes the Hardy space consisting of all \(f\in L^1(\mathbb {R}^n)\) for which

$$\begin{aligned} \Vert f\Vert _{\mathcal {H}^1}=\Vert \sup _{s>0}|G_s*f|\Vert _1=\int _{\mathbb {R}^n}\sup _{s>0}|G_s*f|(x)\,dx<\infty . \end{aligned}$$

Indeed by duality

$$\begin{aligned} \Vert \partial _j G_t*v_0\Vert _\infty =\sup \left\{ \left| \int _{\mathbb {R}^n}u_0(\partial _j G_t)*v_0\,dx\right| {:}\,\Vert u_0\Vert _1\le 1\right\} \end{aligned}$$

for \(j=1,\ldots , n\). Since \((\mathcal {H}^1)^*= BMO \) and by the antisymmetry of \(\partial _j G_t\) we observe that

$$\begin{aligned} \left| \int _{\mathbb {R}^n}u_0((\partial _j G_t)*v_0)\,dx\right|&=\left| -\int _{\mathbb {R}^n}((\partial _j G_t)*u_0)v_0\,dx\right| \\&\le \Vert \partial _j G_t*u_0\Vert _{\mathcal {H}^1}[v_0]_{ BMO }. \end{aligned}$$

The estimate (7.1) now yields

$$\begin{aligned} \Vert \partial _j G_t*v_0\Vert _\infty \le C t^{-1/2}[v_0]_{ BMO }. \end{aligned}$$

The proof of (7.1) is given in [7, 17]. We will give it here for the sake of completeness. We first show (7.1) for \(t=1\). By definition we observe that

$$\begin{aligned} \Vert \partial _j G_1*u_0\Vert _{\mathcal {H}^1}&= \Vert \sup _{s>0}|G_s*\partial _j G_1*u_0|\Vert _1\\&\le \Vert \sup _{s>0}\left( |\partial _j G_{s+1}|*|u_0|\right) \Vert _1\\&\le \Vert \left( \sup _{s>0}|\partial _j G_{s+1}|\right) *|u_0|\Vert _1\\&\le \Vert \sup _{s>0}|\partial _j G_{s+1}|\Vert _1\Vert u_0\Vert _1. \end{aligned}$$

Since \(\partial _j G_t=-x_j G_t/(2t)\), we observe that

$$\begin{aligned} |\partial _j G_t(x)|\le \frac{2|x_j|}{|x|^{n+2}}\frac{1}{\pi ^{n/2}}\varrho ^{\frac{n+2}{2}}\mathrm {e}^{-\varrho } \quad \text{ with }\quad \varrho =\frac{|x|^2}{4t}. \end{aligned}$$

This implies

$$\begin{aligned} |\partial _j G_t(x)|\le \frac{C_0}{|x|^{n+1}} \end{aligned}$$

with \(C_0=2\pi ^{-n/2}\sup _{\varrho >0}\varrho ^\frac{n+2}{2}\mathrm {e}^{-\varrho }\). Additionally we can estimate \(|\partial _j G_t(x)|\le (4\pi )^{-n/2}\) for \(t\ge 1\) and thus observe that

$$\begin{aligned} |\partial _j G_{s+1}(x)|\le \min \left\{ \frac{C_0}{|x|^{n+1}}, \frac{1}{(4\pi )^{n/2}}\right\} =:a(x) \text{ for } s>0, x\in \mathbb {R}^n. \end{aligned}$$

The right hand side is integrable in x and therefore

$$\begin{aligned} \Vert \partial _j G_1*u_0\Vert _{\mathcal {H}^1}\le C_*\Vert u_0\Vert _1, \end{aligned}$$

where \(C_*=\int _{\mathbb {R}^n}a(x)\,dx\). We have now proved (7.1) with \(t=1\). To obtain (7.1) for general t we apply a scaling transformation. For \(\lambda >0\) and a function f in \(\mathbb {R}^n\) let \(f_\lambda \) be defined by \(f_\lambda (x)=\lambda ^n f(\lambda x)\). We notice that

$$\begin{aligned} (\partial _j G_1)* (u_0)_\lambda = \lambda \left( (\partial _j G_{\lambda ^2})* u_0\right) _\lambda . \end{aligned}$$

Since both the \(\mathcal {H}^1\)-norm and the \(L^1\)-norm are invariant under this scaling transformation, the estimate (7.1) with \(t=1\) yields

$$\begin{aligned} \lambda \Vert \partial _j G_{\lambda ^2}* u_0\Vert _{\mathcal {H}^1} \le C_* \Vert u_0\Vert _1 \end{aligned}$$

which yields (7.1) by taking \(\lambda =t^{1/2}\).

Note that our proof implies

$$\begin{aligned} \Vert \partial _j G_1\Vert _{\mathcal {H}^1}\le C_* \text{ and } \Vert \partial _j G_t\Vert _{\mathcal {H}^1}\le C_*t^{-1/2}, \end{aligned}$$

which was established by [7]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolkart, M., Giga, Y. On \(L^\infty \)-BMO estimates for derivatives of the Stokes semigroup. Math. Z. 284, 1163–1183 (2016). https://doi.org/10.1007/s00209-016-1693-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1693-y

Keywords

Mathematics Subject Classification

Navigation