Skip to main content
Log in

Asymptotic-preserving & well-balanced schemes for radiative transfer and the Rosseland approximation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

We are concerned with efficient numerical simulation of the radiative transfer equations. To this end, we follow the Well-Balanced approach’s canvas and reformulate the relaxation term as a nonconservative product regularized by steady-state curves while keeping the velocity variable continuous. These steady-state equations are of Fredholm type. The resulting upwind schemes are proved to be stable under a reasonable parabolic CFL condition of the type ΔtOx2) among other desirable properties. Some numerical results demonstrate the realizability and the efficiency of this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amadori, D., Gosse, L., Guerra, G.: Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws. Arch. Rational Mech. Anal. 162, 327–366 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amadori, D., Gosse, L., Guerra, G.: Godunov-type approximation for a general resonant balance law with large data. To appear in J. Diff. Equations. 198(2), 233–274

    MATH  Google Scholar 

  3. Aregba-Driollet, D., Natalini, R., Tang, S.Q.: Diffusive kinetic explicit schemes for nonlinear degenerate parabolic systems. Math. Comp. 73 63–94 (2004)

    Google Scholar 

  4. Bal, G., Papanicolaou, G., Ryzhik, L.: Radiative transport limit for the random Schroedinger equation. Nonlinearity 15, 513–529 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bardos, C., Golse, F., Perthame, B., Sentis, R.: The Nonaccretive Radiative Transfer Equation: Global Existence and Rosseland Approximation. J. Funct. Anal. 77, 434–460 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Botschorijvili, R., Perthame, B., Vasseur, A.: Equilibrium schemes for scalar conservation laws with stiff source terms. Math. Comp. 72, 131–157 (2003)

    Article  Google Scholar 

  7. Brunner, T.A., Holloway, J.P.: One-dimensional Riemann solvers and the maximum entropy closure. J. Quant. Spectroscopy Radiative Transfer 69, 543–566 (2001)

    Article  Google Scholar 

  8. Buet, C., Cordier, S., Lucquin-Desreux, B., Mancini, S.: Diffusion limits of the Lorentz model: Asymptotic preserving schemes. Math. Model. Anal. Num. 36, 631–655 (2002)

    Article  MATH  Google Scholar 

  9. Caflisch, R.E., Jin, S., Russo, G.: Uniformly Accurate Schemes for Hyperbolic Systems with Relaxations. SIAM J. Numer. Anal. 34, 246–281 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carleman, T.: Problèmes mathématiques de la théorie cinétique des gaz. Almquist Wiksells, 1957

  11. Case, K.M., Zweifel, P.F.: Linear transport theory. Addison-Wesley, Reading MA, 1967

  12. Chandrasekhar, S.: Radiative Transfer. Clarendon Press, Oxford, 1950, reprinted by Dover Publications, New York, 1960, p. 393

  13. Dell’Antonio, G.: Large-time small coupling behavior of a quantum particle in a random potential. Ann. I.H.P. Nonlinear Anal. 39, 339–384 (1983)

    MATH  Google Scholar 

  14. Dubroca, B., Klar, A.: Half-moment closure for radiative transfer equations. J. Comp Phys. 180, 584–596 (2002)

    Article  Google Scholar 

  15. Fannjiang, A., Jin, S., Papanicolaou, G.: High Frequency Behavior of the Focusing Nonlinear Schroedinger Equation with Random Inhomogeneities. SIAM J. Appl. Math. 63, 1328–1358 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Godunov, S.K.: Finite difference schemes for numerical computation of solutions of the equations of fluid dynamics. Mat. USSR Sbornik 47, 271–306 (1959)

    MATH  Google Scholar 

  17. Goldstein, S.: On diffusion by discontinuous movements, and on the telegraph equation. Quart. J. Mech. Appl. Math. 4, 129–156 (1951)

    MathSciNet  MATH  Google Scholar 

  18. Golse, F., Jin, S., Levermore, C.D.: The Convergence of Numerical Transfer Schemes in Diffusive Regimes I: The Discrete-Ordinate Method. SIAM J. Numer. Anal. 36, 1333–1369 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gosse, L.: Localization effects and measure source terms in numerical schemes for balance laws. Math. Comp. 71, 553–582 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gosse, L.: Time-splitting schemes and measure source terms for a quasilinear relaxing system. Math. Models Methods Appl. Sci., to appear

  21. Gosse, L., Toscani, G.: An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations. C. R. Math. Acad. Sci. Paris 334, 337–342 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gosse, L., Toscani, G.: Space localization and well-balanced schemes for discrete kinetic models in diffusive regimes. SIAM J. Numer. Anal. 41, 641–658 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Greenberg, J., LeRoux, A.Y.: A well balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33, 1–16 (1996)

    MathSciNet  Google Scholar 

  24. Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics 31, Springer-Verlag, 2002

  25. Hong, J., Temple, B.: A Bound on the Total Variation of the Conserved Quantities for Solutions of General Resonant Nonlinear Balance Laws. submitted to SIAM J. Applied Math.

  26. Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21, 441–454 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jin, S., Pareschi, L., Toscani, G.: Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations. SIAM J. Numer. Anal. 35, 2405–2439 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jin, S., Pareschi, L., Toscani, G.: Uniformly accurate diffusive relaxation schemes for multiscale transport equations. SIAM J. Numer. Anal. 38, 913–936 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Klar, A.: An asymptotic induced scheme for nonstationary transport equations in the diffusive limit. SIAM J. Numer. Anal. 35, 1073–1094 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Klar, A., Schmeiser, C.: Numerical Passage from Radiative Heat Transfer to Nonlinear Diffusion Models. Math. Models Meth. Appl. Sci. 11, 749–767 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Larsen, E., Morel, J.E., Miller, W.F.: Asymptotic solution of transport problems in thick, diffusive regimes. J. Comp. Phys. 69, 283–324 (1987)

    MathSciNet  MATH  Google Scholar 

  32. Ph.LeFloch, Tzavaras, A.E.: Representation of weak limits and definition of nonconservative products. SIAM J. Math. Anal. 30, 1309–1342 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lions, P.L., Toscani, G.: Diffusive limit for finite velocity Boltzmann kinetic models. Rev. Mat. Iberoamericana 13, 473–513 (1997)

    MathSciNet  MATH  Google Scholar 

  34. de Oliveira, J.V.P., Cardona, A.V., Vilhena, M.T., Barros, R.C.: A semi-analytical numerical method for time-dependent radiative transfer problems in slab geometry with coherent isotropic scattering. J. Quant. Spectroscopy Radiative Transfer 73, 55–62 (2002)

    Article  Google Scholar 

  35. Pomraning, G.C.: Radiative transfer and transport phenomena in stochastic media. Intern. J. Engineering Sci. 36, 1595–1621 (1998)

    Article  MathSciNet  Google Scholar 

  36. Spohn, H.: Derivation of a transport equation for electrons moving through random impurities. J. Stat. Phys. 17, 385–412 (1977)

    MATH  Google Scholar 

  37. Taylor, G.I.: Diffusion by continuous movements. Proc. London Math. Soc 20, 196–212 (1920)

    MATH  Google Scholar 

  38. Thomas, G.E., Stamnes, K.: Radiative transfer in the atmosphere and ocean. Cambridge Univ. Press, 1999

  39. Vasseur, A.: Well-posedness for scalar conservation laws with singular sources. Meth. Appl. Anal. 9, 291–312 (2002)

    MathSciNet  Google Scholar 

  40. Zender, C.: Radiative transfer in the Earth system. Univ. California at Irvine, 2001 http://www.ess.uci.edu/zender/rt/rt.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Gosse.

Additional information

Mathematics Subject Classification (1991): 82C70, 65M06, 35B25

Work partially supported by EEC network #HPRN-CT-2002-00282.

Revised version received July 21, 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gosse, L., Toscani, G. Asymptotic-preserving & well-balanced schemes for radiative transfer and the Rosseland approximation. Numer. Math. 98, 223–250 (2004). https://doi.org/10.1007/s00211-004-0533-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-004-0533-x

Keywords

Navigation