Skip to main content
Log in

Two-grid finite volume element method for linear and nonlinear elliptic problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Two-grid finite volume element discretization techniques, based on two linear conforming finite element spaces on one coarse and one fine grid, are presented for the two-dimensional second-order non-selfadjoint and indefinite linear elliptic problems and the two-dimensional second-order nonlinear elliptic problems. With the proposed techniques, solving the non-selfadjoint and indefinite elliptic problem on the fine space is reduced into solving a symmetric and positive definite elliptic problem on the fine space and solving the non-selfadjoint and indefinite elliptic problem on a much smaller space; solving a nonlinear elliptic problem on the fine space is reduced into solving a linear problem on the fine space and solving the nonlinear elliptic problem on a much smaller space. Convergence estimates are derived to justify the efficiency of the proposed two-grid algorithms. A set of numerical examples are presented to confirm the estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Axelsson O. and Layton W. (1996). A two-level discretization of nonlinear boundary value problems. SIAM J. Numer. Anal. 33: 2359–2374

    Article  MATH  MathSciNet  Google Scholar 

  2. Baliga B.R. and Patankar S.V. (1980). A new finite element formulation for convection–diffusion problems. Numer. Heat Transf. 3: 393–410

    Article  Google Scholar 

  3. Bank R.E. and Rose D.J. (1987). Some error estimates for the box method. SIAM J. Numer. Anal. 24: 777–787

    Article  MATH  MathSciNet  Google Scholar 

  4. Bi C.J. and Li L.K. (2003). The mortar finite volume element method with the Crouzeix-Raviart element for elliptic problems. Comp. Methods. Appl. Mech. Eng. 192: 15–31

    Article  MATH  MathSciNet  Google Scholar 

  5. Bi C.J. (2007). Superconvergence of finite volume element method for a nonlinear elliptic problem. Numer. Methods PDEs 23: 220–233

    MATH  MathSciNet  Google Scholar 

  6. Brenner S. and Scott R. (1994). The Mathematical Theory of Finite Element Methods. Springer, Heidelberg

    MATH  Google Scholar 

  7. Cai Z. (1991). On the finite volume element method. Numer. Math. 58: 713–735

    Article  MATH  MathSciNet  Google Scholar 

  8. Chatzipantelidis P. (2002). Finite volume methods for elliptic PDE’s: a new approach. Math. Model. Numer. Anal. 36: 307–324

    Article  MATH  MathSciNet  Google Scholar 

  9. Chatzipantelidis P., Ginting V. and Lazarov R.D. (2005). A finite volume element method for a nonlinear elliptic problem. Numer. Linear Algebra Appl. 12: 515–546

    Article  MathSciNet  Google Scholar 

  10. Chou S.H. and Li Q. (2000). Error estimates in L 2, H 1 and L in covolume methods for elliptic and parabolic problems: a unified approach. Math. Comp. 69: 103–120

    Article  MATH  MathSciNet  Google Scholar 

  11. Chou S.H. and Kwak D.Y. (2002). Multigrid algorithms for a vertex-centered covolume method for elliptic problems. Numer. Math. 90: 459–486

    Article  MathSciNet  Google Scholar 

  12. Ciarlet P. (1978). The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam

    MATH  Google Scholar 

  13. Dawson C.N., Wheeler M.F. and Woodward C.S. (1998). A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal. 35: 435–452

    Article  MATH  MathSciNet  Google Scholar 

  14. Ewing R.E., Lin T. and Lin Y.P. (2002). On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39: 1865–1888

    Article  MATH  MathSciNet  Google Scholar 

  15. Grisvard P. (1985). Elliptic Problems in Nonsmooth Domain. Pitman Advanced Pub. Program, Boston

    Google Scholar 

  16. Huang J.G. and Xi S.T. (1998). On the finite volume element method for general self-adjoint elliptic problems. SIAM J. Numer. Anal. 35: 1762–1774

    Article  MATH  MathSciNet  Google Scholar 

  17. Layton W. and Lenferink W. (1995). Two-level Picard and modified Picard methods for the Navier–Stokes equations. Appl. Math. Comp. 69: 263–274

    Article  MATH  MathSciNet  Google Scholar 

  18. Liang S.H., Ma X.L. and Zhou A.H. (2002). A symmetric finite volume scheme for selfadjoint elliptic problems. J. Comput. Appl. Math. 147: 121–136

    Article  MATH  MathSciNet  Google Scholar 

  19. Li R.H. (1987). Generalized difference methods for a nonlinear Dirichlet problem. SIAM J. Numer. Anal. 24: 77–88

    Article  MATH  MathSciNet  Google Scholar 

  20. Li R.H., Chen Z.Y. and Wei W. (2000). Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods. Marcel Dekker, New York

    MATH  Google Scholar 

  21. Lin Q. and Zhu Q. (1994). The Preprocessing and Postprocessing for the Finite Element Methods. (in Chinese). Shanghai Scientific and Technical Publishers, Shanghai

    Google Scholar 

  22. Marion M. and Xu J.C. (1995). Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal. 32: 1170–1184

    Article  MATH  MathSciNet  Google Scholar 

  23. Mishev I.D. (1999). Finite volume element methods for non-definite problems. Numer. Math. 83: 161–175

    Article  MATH  MathSciNet  Google Scholar 

  24. Rannacher R. and Scott R. (1982). Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 15: 1–22

    MathSciNet  Google Scholar 

  25. Schatz A.H. (1974). An observation concerning Ritz–Galerkin methods with indefinite bilinear forms. Math. Comp. 28: 959–962

    Article  MATH  MathSciNet  Google Scholar 

  26. Shi Z.C., Xu X.J. and Man H.Y. (2004). Cascadic multigrid for finite volume methods for elliptic problems. J. Comput. Math. 22: 905–920

    MATH  MathSciNet  Google Scholar 

  27. Utnes T. (1997). Two-grid finite element formulations of the incompressible Navier–Stokes equation. Comm. Numer. Methods Eng. 34: 675–684

    Article  MathSciNet  Google Scholar 

  28. Wu H.J. and Li R.H. (2003). Error estimates for finite volume element methods for general second order elliptic problem. Numer. Methods PDEs 19: 693–708

    MATH  Google Scholar 

  29. Xu J.C. (1992). A new class of iterative methods for nonselfadjoint or indefinite elliptic problems. SIAM J. Numer. Anal. 29: 303–319

    Article  MATH  MathSciNet  Google Scholar 

  30. Xu J.C. (1994). A novel two-grid method for semi-linear equations. SIAM J. Sci. Comput. 15: 231–237

    Article  MATH  MathSciNet  Google Scholar 

  31. Xu J.C. (1996). Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33: 1759–1777

    Article  MATH  MathSciNet  Google Scholar 

  32. Xu J.C. and Zhou A.H. (1999). A two-grid discretization scheme for eigenvalue problems. Math. Comp. 70: 17–25

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjia Bi.

Additional information

The work is supported by the National Natural Science Foundation of China (Grant No: 10601045).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, C., Ginting, V. Two-grid finite volume element method for linear and nonlinear elliptic problems. Numer. Math. 108, 177–198 (2007). https://doi.org/10.1007/s00211-007-0115-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0115-9

Mathematics Subject Classification (2000)

Navigation