Skip to main content
Log in

A nonconforming finite element method for a two-dimensional curl–curl and grad-div problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A numerical method for a two-dimensional curl–curl and grad-div problem is studied in this paper. It is based on a discretization using weakly continuous P 1 vector fields and includes two consistency terms involving the jumps of the vector fields across element boundaries. Optimal convergence rates (up to an arbitrary positive \({\epsilon}\)) in both the energy norm and the L 2 norm are established on graded meshes. The theoretical results are confirmed by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apel, Th.: Anisotropic Finite Elements. Teubner, Stuttgart (1999)

    Google Scholar 

  2. Apel, Th., Sändig, A.-M., Whiteman, J.R.: Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci. 19, 63–85 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Assous, F., Ciarlet, P. Jr., Labrunie, S., Segré, J.: Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: the singular complement method. J. Comput. Phys. 191, 147–176 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Assous, F., Ciarlet, P. Jr., Garcia, E., Segré, J.: Time-dependent Maxwell’s equations with charges in singular geometries. Comput. Methods Appl. Mech. Eng. 196, 665–681 (2006)

    Article  MATH  Google Scholar 

  5. Assous, F., Ciarlet, P. Jr., Labrunie, S., Lohrengel, S.: The singular complement method. In: Debit, N., Garbey, M., Hoppe, R., Keyes, D., Kuznetsov, Y., Périaux, J.(eds) Domain Decomposition Methods in Science and Engineering, pp. 161–189. CIMNE, Barcelona (2002)

    Google Scholar 

  6. Assous, F., Ciarlet, P. Jr., Sonnendrücker, E.: Resolution of the Maxwell equation in a domain with reentrant corners. M 2(N Math. Model. Numer. Anal. 32), 359–389 (1998)

    Google Scholar 

  7. Babuška, I., Osborn, J.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L.(eds) Handbook of Numerical Analysis II, pp. 641–787. North-Holland, Amsterdam (1991)

    Google Scholar 

  8. Băcuţă, C., Nistor, V., Zikatanov, L.T.: Improving the rate of convergence of ‘high order finite elements’ on polygons and domains with cusps. Numer. Math. 100, 165–184 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bathe, K.J., Nitikitpaiboon, C., Wang, X.: A mixed displacement-based finite element formulation for acoustic fluid-structure interaction. Comput. Struct. 56, 225–237 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bermúdez, A., Rodríguez, R.: Finite element computation of the vibration modes of a fluid-solid system. Comput. Methods Appl. Mech. Eng. 119, 355–370 (1994)

    Article  MATH  Google Scholar 

  11. Birman, M., Solomyak, M.: L 2-theory of the Maxwell operator in arbitrary domains. Russ. Math. Surv. 42, 75–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boffi, D., Gastaldi, L.: On the “-grad div s curl rot” operator. In: Computational fluid and solid mechanics, vol. 1, 2 (Cambridge, MA, 2001), pp. 1526–1529. Elsevier, Amsterdam (2001)

  13. Bonnet-Ben Dhia, A.-S., Hazard, C., Lohrengel, S.: A singular field method for the solution of Maxwell’s equations in polyhedral domains. SIAM J. Appl. Math. 59, 2028–2044 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bossavit, A.: Discretization of electromagnetic problems: the “generalized finite differences” approach. In: Ciarlet, P.G., Schilders, W.H.A., Ter Maten, E.J.W.(eds) Handbook of numerical analysis, vol XIII, Handb. Numer. Anal., XIII, pp. 105–197. North-Holland, Amsterdam (2005)

    Google Scholar 

  15. Brenner, S.C., Carstensen, C.: Finite element methods. In: Stein, E., de Borst, R., Hughes, T.J.R.(eds) Encyclopedia of Computational Mechanics, pp. 73–118. Wiley, Weinheim (2004)

    Google Scholar 

  16. Brenner, S.C., Li, F., Sung, L.-Y.: A locally divergence-free interior penalty method for two dimensional curl–curl problems. SIAM J. Numer. Anal. 46, 1190–1211 (2008)

    Article  MathSciNet  Google Scholar 

  17. Brenner, S.C., Li, F., Sung, L.-Y.: A locally divergence-free nonconforming finite element method for the time-harmonic Maxwell equations. Math. Comp. 76, 573–595 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Brenner, S.C., Li, F., Sung, L.-Y.: A nonconforming penalty method for a two dimensional curl–curl problem. preprint, (2007)

  19. Brenner, S.C., Li, F., Sung, L.-Y.: Parameter free nonconforming Maxwell eigensolvers without spurious eigenmodes. preprint, (2008)

  20. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  21. Ciarlet, P. Jr.: Augmented formulations for solving Maxwell equations. Comput. Methods Appl. Mech. Eng. 194, 559–586 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    Book  MATH  Google Scholar 

  23. Costabel, M.: A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. Math. Methods Appl. Sci. 12, 36–368 (1990)

    Article  MathSciNet  Google Scholar 

  24. Costabel, M.: A coercive bilinear form for Maxwell’s equations. J. Math. Anal. Appl. 157, 527–541 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Costabel, M., Dauge, M.: Maxwell and Lamé eigenvalues on polyhedra. Math. Methods Appl. Sci. 22, 243–258 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Costabel, M., Dauge, M.: Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal. 151, 221–276 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Costabel, M., Dauge, M.: Weighted regularization of Maxwell equations in polyhedral domains. Numer. Math. 93, 239–277 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Costabel, M., Dauge, M., Schwab, C.: Exponential convergence of hp-FEM for Maxwell equations with weighted regularization in polygonal domains. Math. Models Methods Appl. Sci. 15, 575–622 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Coulomb, J.L.: Finite element three dimensional magnetic field computation. IEEE Trans. Magnetics 17, 3241–3246 (1981)

    Article  Google Scholar 

  30. Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO Anal. Numér. 7, 33–75 (1973)

    MathSciNet  Google Scholar 

  31. Cui, J.: Nonconforming Multigrid Methods for Maxwell’s Equations. PhD thesis, Louisiana State University (in preparation)

  32. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Lecture Notes in Mathematics, vol. 1341. Springer, Heidelberg (1988)

  33. Demkowicz, L.: Finite Element Methods for Maxwell Equations. In: Stein, E., de Borst, R., Hughes, T.J.R.(eds) Encyclopedia of Computational Mechanics, pp. 723–737. Wiley, Weinheim (2004)

    Google Scholar 

  34. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer, Berlin (1986)

    MATH  Google Scholar 

  35. Grisvard, P.: Elliptic Problems in Non Smooth Domains. Pitman, Boston (1985)

    Google Scholar 

  36. Grisvard, P.: Singularities in Boundary Value Problems. Masson, Paris (1992)

    MATH  Google Scholar 

  37. Hamdi, M.A., Ousset, Y., Verchery, G.: A displacement method for the analysis of vibrations of coupled fluid–structure systems. Int. J. Numer. Methods Eng. 13, 139–150 (1978)

    Article  MATH  Google Scholar 

  38. Hazard, C., Lohrengel, S.: A singular field method for Maxwell’s equations: numerical aspects for 2D magnetostatics. SIAM J. Numer. Anal. 40, 1021–1040 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kato, T.: Perturbation Theory of Linear Operators. Springer, Berlin (1966)

    Google Scholar 

  41. Leis, R.: Zur Theorie elektromagnetischer Schwingungen in anisotopen inhomgenen Medien. Math. Z. 106, 213–224 (1968)

    Article  MathSciNet  Google Scholar 

  42. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, New York (2003)

    MATH  Google Scholar 

  43. Nazarov, S.A., Plamenevsky, B.A.: Elliptic Problems in Domains with Piecewise Smooth Boundaries. de Gruyter, Berlin (1994)

    MATH  Google Scholar 

  44. Nédélec, J.-C.: Mixed finite elements in R3. Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  45. Nédélec, J.-C.: A new family of mixed finite elements in R3. Numer. Math. 50, 57–81 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  46. Neittaanmäki, P., Picard, R.: Error estimates for the finite element approximation to a Maxwell-type boundary value problem. Numer. Funct. Anal. Optimiz. 2, 267–285 (1980)

    Article  MATH  Google Scholar 

  47. Rahman, B.M.A., Davies, J.B.: Finite element analysis of optical and microwave waveguide problems. IEEE Trans. Microwave Theory Tech. 32, 20–28 (1984)

    Article  Google Scholar 

  48. Schatz, A.: An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp. 28, 959–962 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  49. Weber, C.: A local compactness theorem for Maxwell’s equations. Math. Meth. Appl. Sci. 2, 12–25 (1980)

    Article  MATH  Google Scholar 

  50. Weiland, T.: On the unique numerical solution of Maxwellian eigenvalue problems in three dimensions. Part. Accel. 17, 227–242 (1985)

    Google Scholar 

  51. Witsch, K.J.: A remark on a compactness result in electromagnetic theory. Math. Methods. Appl. Sci 16, 123–129 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Brenner.

Additional information

The work of the first author was supported in part by the National Science Foundation under Grant No. DMS-03-11790 and by the Humboldt Foundation through her Humboldt Research Award. The work of the third author was supported in part by the National Science Foundation under Grant No. DMS-06-52481.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenner, S.C., Cui, J., Li, F. et al. A nonconforming finite element method for a two-dimensional curl–curl and grad-div problem. Numer. Math. 109, 509–533 (2008). https://doi.org/10.1007/s00211-008-0149-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0149-7

Keywords

Mathematics Subject Classification (2000)

Navigation