Skip to main content
Log in

Stability of the difference type methods for linear Volterra equations in Hilbert spaces

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We study the stability of backward difference timestepping method for linear Volterra equations of scalar type in a Hilbert space framework. The results and methods extend and simulate numerically those introduced by Prüss for integrability with respect to continuous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pipkin, A.C.: Lectures on Viscoelasticity Theory. Springer, Berlin (1972)

    MATH  Google Scholar 

  2. Renardy, M., Hrusa, W.J., Nohel, J.A.: Mathematical Problems in Viscoelasticity. Longman Scientific and Technical, London (1987)

    MATH  Google Scholar 

  3. Prüss, J.: Positivity and regularity of hyperbolic Volterra equations in Banach spaces. Math. Ann. 279, 317–344(1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Prüss, J.: Regularity and integrability of resolvent of linear Volterra equations. In: Da Prato, G., Iannelli, M. (eds.) Volterra integro-differential equations in banach spaces and applications. Pitman Research Notes in Mathematics Series, vol. 190, pp. 339–367 (1989)

  5. Carr, R.W., Hannsgen, K.B.: A nonhomogeneous integro-differential equation in Hilbert space. SIAM J. Math. Anal. 10, 961–984 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carr, R.W., Hannsgen, K.B.: Resolvent formulas for a Volterra equation in Hilbert space. SIAM J. Math. Anal. 13, 459–483 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lubich, Ch.: Convolution quadrature and discretized operational calculus I. Numer. Math. 52, 129–145 (1988). MR 89g:65018

    Google Scholar 

  8. Lubch, Ch.: Convolution quadratures and discretized operational calculus II. Numer. Math. 52, 413– 425 (1988)

    Article  MathSciNet  Google Scholar 

  9. Lubich, Ch., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65, 1–17 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. McLean, W., Thomée, V.: Asymptotic behavior of numerical solutions of an evolution equation with memory. Asymptot Anal 14, 257–276 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Xu, D.: Uniform l 1 behavior for time discretization of Volterra equation with completely monotonic kernel: I. stability. IMA J. Numer. Anal. 22, 133–151 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Miller, R.K.: On Volterra integral equations with nonnegative integrable resolvent. J. Math. Anal. Appl. 22, 319–340 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  13. Clément, Ph., Nohel, J.A.: Abstract linear and nonlinear Volterra equations preserving positivity. SIAM J. Math. Anal. 10, 365–388 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Travis, C.C., Webb, G.F.: Second order differential equations in Banach spaces. In: Lakshmikantham, V.(eds) Nonlinear equations in abstract spaces, pp. 331–361. Academic Press, New York (1978)

    Google Scholar 

  15. Hannsgen, K.B.: Indirect abelian theorems and a linear Volterra equation. Trans. Am. Math. Soc. 142, 539–555 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eggermont, P.P.B., Lubich, Ch.: Uniform error estimates of operational quadrature methods for nonlinear convolution equations on the half-line. Math. Comput. 56, 149–176 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eggermont, P.P.B., Lubich, Ch.: Operational Quadrature methods for Wiener-Hopf integral equations. Math. Comput. 60, 699–718 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Prüss, J.: Bounded solutions of Volterra equations. SIAM J. Math. Anal. 19, 133–149 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Paley, R., Wiener, N.: Fourier Trans forms in the Complex Domain. Amer. Math. Soc. Colloq. Publ. Amer. Math. Soc., vol. 19. Providence, Rhode Island (1934)

  20. Prüss, J: Lineare Volterra Gleichungen in Banach-Räumen. Habilitationsschrift, Universität-GH Paderborn (1984)

    Google Scholar 

  21. Gripenberg, G.: Asymptotic behavior of resolvent of abstract Volterra equations. J. Math. Anal. Appl. 122, 427–438 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gripenberg, G.: Stability of Volterra equations with measure kernels in Banach spaces. J. Math. Anal. Appl. 178, 156–164 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gripenberg, G., Londen, S.O., Staffans, O.J.: Volterra Integral and Functional Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  24. Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  25. Chui, C.K.: An Introduction to Wavelets. Academic Press, Harcourt Brace Jovanovich, New York (1992)

  26. Eggermont, P.P.B.: On the quadrature error in operational quadrature methods for convolutions. Numer. Math. 62, 35–48 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hall, G., Watt, J.M. (eds.): Modern Numerical Methods for Ordinary Differential Equations. Oxford University Press, Oxford (1976)

  28. Nørsett, S.P.: A criterion for A(α) stability of linear multi-step methods. B. I. T. 9, 259–(1969)

    Google Scholar 

  29. Prüss, J.: Evolutionary integral equations and applications. Monographs in Mathematics, vol. 87. Birkhäuser, Berlin (1993)

    Google Scholar 

  30. Gelfand, I.M., Raikov, D.A., Shilov, G.E.: Commutative Normed Rings. Chelsea, New York (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Da.

Additional information

This work was supported in part by the National Natural Science Foundation of China, contract grant number 10271046.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Da, X. Stability of the difference type methods for linear Volterra equations in Hilbert spaces. Numer. Math. 109, 571–595 (2008). https://doi.org/10.1007/s00211-008-0151-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0151-0

Mathematics Subject Classification (2000)

Navigation