Skip to main content
Log in

Numerical discretization of a Darcy–Forchheimer model

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We solve a steady Darcy–Forchheimer flow in a bounded region by means of piecewise constant velocities and nonconforming piecewise \({\mathbb{P}_1}\) pressures. For the computation, we solve the nonlinearity by an alternating-directions algorithm and we decouple the computation of the velocity from that of the pressure by a gradient algorithm. We prove a priori error estimates of the scheme and convergence of the alternating-directions algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A.: Sobolev Spaces. Academic Press, New York, NY (1975)

    MATH  Google Scholar 

  2. Amirat Y.: Ecoulements en milieu poreux n’obéissant pas à la loi de Darcy. M2AN 25(5), 273–306 (1991)

    MATH  MathSciNet  Google Scholar 

  3. Amrouche C., Girault V.: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimensions. Czech. Math. J. 44(119), 109–140 (1994)

    MATH  MathSciNet  Google Scholar 

  4. Babuška I.: The finite element method with Lagrangian multipliers. Numer. Math. 20, 179–192 (1973)

    Article  MATH  Google Scholar 

  5. Barree, R.D., Conway, M.W.: Beyond beta factors: a complete model for Darcy, Forchheimer, and Trans-Forchheimer flow in porous media, SPE 89325, presented at the ATCE in Houston, Texas (September 26–29, 2004)

  6. Bermúdez A., Moreno C.: Duality methods for solving variational inequalities. Comp. Math. Appl. 7, 43–58 (1981)

    Article  MATH  Google Scholar 

  7. Bernardi, C., Girault, V., Rajagopal, K.R.: Discretization of an unsteady flow through a porous solid modeled by Darcy’s equations, Math. Models Meth. Appl. Sci. (to appear)

  8. Brenner S.: Poincaré–Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41, 306–324 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange mutipliers, RAIRO, Anal. Num. R2, 129–151 (1974)

  10. Ciarlet P.G.: Basic error estimates for elliptic problems—finite element methods, Part 1. In: Ciarlet, P.G., Lions, J.L.(eds) Handbook of Numerical Analysis, North-Holland, Amsterdam (1991)

    Google Scholar 

  11. Crouzeix, M.: Private communication by email (September 2004)

  12. Crouzeix M., Raviart P.A.: Conforming and non-conforming finite element methods for solving the stationary Stokes problem. RAIRO Anal. Numér. 8, 33–76 (1973)

    MathSciNet  Google Scholar 

  13. Douglas, J., Paes-Leme, P.J., Giorgi, T.: Generalized Forchheimer flow in porous media. In: Boundary Value Problems for Partial Differential Equations and Applications, Lecture Notes in Physics, vol. 58, pp. 207–216. Springer, Berlin (1993)

  14. Ewing R.E., Lazarov R.D., Lyons S.L., Papavassiliou D.V., Pasciak J., Qin G.: Numerical well model for non-Darcy flow through isotropic porous media. Comput. Geosci. 3(3–4), 184–204 (1999)

    MathSciNet  Google Scholar 

  15. Fabrie P.: Regularity of the solution of Darcy–Forchheimer’s equation. Nonlinear Anal. Theory Methods Appl. 13, 1025–1049 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Forchheimer P.: Wasserbewegung durch Boden. Z. Ver. Deutsh. Ing. 45, 1782–1788 (1901)

    Google Scholar 

  17. Girault V., Raviart P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, SCM, vol. 5. Springer, Berlin (1986)

    Google Scholar 

  18. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Pitman Monographs and Studies in Mathematics, vol. 24. Pitman, Boston, MA (1985)

  19. Glowinski, R.: Numerical Methods for Fluids, Handbook of Numerical Analysis, vol. IX. North-Holland, Elsevier, Amsterdam (2003)

  20. Huang, H., Ayoub, J.: Applicability of the Forchheimer Equation for Non-Darcy flow in Porous Media, SPE 102715, presented at the ATCE in San Antonio, Texas (September 24–27, 2006)

  21. Hill R.J., Koch D.L., Ladd A.J.C.: The first effects of fluid inertia on flows in ordered and random arrays of spheres. J. Fluid Mech. 448, 213–241 (2001)

    MATH  MathSciNet  Google Scholar 

  22. Kim M.Y., Park E.J.: Fully discrete mixed finite element approximations for non-Darcy flows in porous media. Comput. Math. Appl. 38(11–12), 113–129 (1999)

    Article  MATH  Google Scholar 

  23. Lions J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  24. Lions J.L., Magenes E.: Problèmes aux Limites non Homogènes et Applications, vol. I. Dunod, Paris (1968)

    Google Scholar 

  25. Lions P.L., Mercier M.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mei C.C., Auriault J.L.: The effect of weak inertia on flow through a porous medium. J. Fluid Mech. 222, 647–663 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  27. Nečas J.: Les Méthodes directes en théorie des équations elliptiques. Masson, Paris (1967)

    Google Scholar 

  28. Parés C., Macias J., Castro M.: Duality methods with an automatic choice of parameters. Application to shallow water equations in conservative form. Numer. Math. 89, 161–189 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Park J.: A primal mixed domain decomposition procedure based on the non-conforming streamline diffusion method. Appl. Numer. Math. 50(2), 165–181 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Park E.J.: Mixed finite element methods for generalized Forchheimer flow in porous media. Numer. Methods Partial Differential Equations 21(2), 213–228 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Peaceman D.H., Rachford H.H.: The numerical solution of parabolic elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ruth, D., Ma, H.: On the Derivation of the Forchheimer Equation by Means of the Averaging Theorem, Transport in Porous Media, vol. 7, pp. 255–264 (1992)

  33. Sanchez-Palencia E.: Non-homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol. 127. Springer, New York (1980)

    Google Scholar 

  34. Scott L.R., Zhang S.: Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp. 54, 483–493 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  35. Showalter, R.E.: Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations, Math. Surveys and Monographs, vol. 49. AMS, Providence, RI (1997)

  36. Tartar, L.: Incompressible fluid flow in a porous media—convergence of the homogenization process. In: Non-homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol. 127. Springer, New York (1980)

  37. Temam R.: Navier–Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  38. Whitaker S.: Flow in porous media. I. A theoretical derivation of Darcy’s law. Transp. Porous Media 1, 3–25 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Girault.

Additional information

The first author was supported by the J. Tinsley Oden Faculty Fellowship, ICES, The University of Texas at Austin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girault, V., Wheeler, M.F. Numerical discretization of a Darcy–Forchheimer model. Numer. Math. 110, 161–198 (2008). https://doi.org/10.1007/s00211-008-0157-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0157-7

Mathematical Subject Classification (2000).

Navigation