Skip to main content
Log in

Operator splitting methods for pricing American options under stochastic volatility

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider the numerical pricing of American options under Heston’s stochastic volatility model. The price is given by a linear complementarity problem with a two-dimensional parabolic partial differential operator. We propose operator splitting methods for performing time stepping after a finite difference space discretization. The idea is to decouple the treatment of the early exercise constraint and the solution of the system of linear equations into separate fractional time steps. With this approach an efficient numerical method can be chosen for solving the system of linear equations in the first fractional step before making a simple update to satisfy the early exercise constraint. Our analysis suggests that the Crank–Nicolson method and the operator splitting method based on it have the same asymptotic order of accuracy. The numerical experiments show that the operator splitting methods have comparable discretization errors. They also demonstrate the efficiency of the operator splitting methods when a multigrid method is used for solving the systems of linear equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball C.A., Roma A.: Stochastic volatility option pricing. J. Financ. Quant. Anal. 29, 589–607 (1994)

    Article  Google Scholar 

  2. Black F., Scholes M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)

    Article  Google Scholar 

  3. Brandt A., Cryer C.W.: Multigrid algorithms for the solution of linear complementarity problems arising from free boundary problems. SIAM Sci. Stat. Comput. 4, 655–684 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brennan M.J., Schwartz E.S.: The valuation of American put options. J. Finance 32, 449–462 (1977)

    Article  Google Scholar 

  5. Briggs W.L., Henson V.E., McCormick S.F.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  6. Broadie M., Chernov M., Johannes M.: Model specification and risk premia: evidence from futures options. J. Finance 62, 1453–1490 (2007)

    Article  Google Scholar 

  7. Cash J.R.: Two new finite difference schemes for parabolic equations. SIAM J. Numer. Anal. 21, 433–446 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Clarke, N., Parrott, K.: The multigrid solution of two-factor American put options. Technical Report 96-16, Oxford Comp. Lab, Oxford (1996)

  9. Clarke N., Parrott K.: Multigrid for American option pricing with stochastic volatility. Appl. Math. Finance 6, 177–195 (1999)

    Article  MATH  Google Scholar 

  10. Coleman T.F., Li Y., Verma A.: A Newton method for American option pricing. J. Comput. Finance 5, 51–78 (2002)

    Google Scholar 

  11. Duffie D.: Dynamic Asset Pricing Theory, 2nd edn. Princeton University Press, Princeton (1996)

    Google Scholar 

  12. Forsyth P.A., Vetzal K.R.: Quadratic convergence for valuing American options using a penalty method. SIAM J. Sci. Comput. 23, 2095–2122 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fouque J.-P., Papanicolaou G., Sircar K.R.: Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  14. Giles M.B., Carter R.: Convergence analysis of Crank–Nicolson and Rannacher time-marching. J. Comput. Finance 9, 89–112 (2006)

    Google Scholar 

  15. Glowinski R.: Finite element methods for incompressible viscous flow. Handbook of Numerical Analysis, vol. IX. North-Holland, Amsterdam (2003)

    Google Scholar 

  16. Hackbusch W.: Multigrid methods and applications. Springer Series in Computational Mathematics, vol. 4. Springer, Berlin (1985)

    Google Scholar 

  17. Heston S.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Finance Stud. 6, 327–343 (1993)

    Article  Google Scholar 

  18. Huang J., Pang J.-S.: Option pricing and linear complementarity. J. Comput. Finance 2, 31–60 (1998)

    Google Scholar 

  19. Hull J., White A.: The pricing of options on assets with stochastic volatilities. J. Finance 42, 281–300 (1987)

    Article  Google Scholar 

  20. Hull J.C.: Options, Futures, and Other Derivatives, 3rd edn. Prentice Hall, Upper Saddle River (1997)

    Google Scholar 

  21. Ikonen S., Toivanen J.: Operator splitting methods for American option pricing. Appl. Math. Lett. 17, 809–814 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ikonen S., Toivanen J.: Efficient numerical methods for pricing American options under stochastic volatility. Numer. Methods Partial Differ. Equ. 24, 104–126 (2007)

    Article  MathSciNet  Google Scholar 

  23. Lions P.-L., Mercier B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mitchell A.R., Griffiths D.F.: The Finite Difference Method in Partial Differential Equations. Wiley, Chichester (1980)

    MATH  Google Scholar 

  25. Oosterlee C.W.: On multigrid for linear complementarity problems with application to American-style options. Electron. Trans. Numer. Anal. 15, 165–185 (2003)

    MATH  MathSciNet  Google Scholar 

  26. Pooley D.M., Vetzal K.R., Forsyth P.A.: Convergence remedies for non-smooth payoffs in option pricing. J. Comput. Finance 6, 25–40 (2003)

    Google Scholar 

  27. Trottenberg U., Oosterlee C.W., Schüller A.: Multigrid. Academic Press Inc., San Diego (2001)

    MATH  Google Scholar 

  28. Wesseling P.: An Introduction to Multigrid Methods. Wiley, Chichester (1992)

    MATH  Google Scholar 

  29. Wilmott P., Howison S., Dewynne J.: The Mathematics of Financial Derivatives. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  30. Zvan R., Forsyth P.A., Vetzal K.R.: Penalty methods for American options with stochastic volatility. J. Comput. Appl. Math. 91, 199–218 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Zvan R., Forsyth P.A., Vetzal K.R.: Negative coefficients in two factor option pricing models. J. Comput. Finance 7, 37–73 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jari Toivanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikonen, S., Toivanen, J. Operator splitting methods for pricing American options under stochastic volatility. Numer. Math. 113, 299–324 (2009). https://doi.org/10.1007/s00211-009-0227-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0227-5

Mathematics Subject Classification (2000)

Navigation