Skip to main content
Log in

A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this work we consider a stabilized Lagrange (or Kuhn–Tucker) multiplier method in order to approximate the unilateral contact model in linear elastostatics. The particularity of the method is that no discrete inf-sup condition is needed in the convergence analysis. We propose three approximations of the contact conditions well adapted to this method and we study the convergence of the discrete solutions. Several numerical examples in two and three space dimensions illustrate the theoretical results and show the capabilities of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Alart P., Curnier A.: A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng. 92, 353–375 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Babuška I.: The finite element method with Lagrange multipliers. Numer. Math. 20, 179–192 (1973)

    Article  MATH  Google Scholar 

  4. Barbosa H.J.C., Hughes T.J.R.: The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška–Brezzi condition. Comput. Methods Appl. Mech. Eng. 85, 109–128 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barbosa H.J.C., Hughes T.J.R.: Boundary Lagrange multipliers in finite element methods: error analysis in natural norms. Numer. Math. 62, 1–15 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barbosa H.J.C., Hughes T.J.R.: Circumventing the Babuška–Brezzi condition in mixed finite element approximations of elliptic variational inequalities. Comput. Methods Appl. Mech. Eng. 97, 193–210 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Becker R., Hansbo P., Stenberg R.: A finite element method for domain decomposition with non-matching grids. Math. Model. Numer. Anal. 37, 209–225 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Belhachmi Z., Ben Belgacem F.: Quadratic finite element approximation of the Signorini problem. Math. Comp. 72, 83–104 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Belhachmi Z., Sac-Epée J.M., Sokolowski J.: Mixed finite element methods for smooth domain formulation of crack problems. SIAM J. Numer. Anal. 43, 1295–1320 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ben Belgacem F.: Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element method. SIAM J. Numer. Anal. 37, 1198–1216 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ben Belgacem F., Renard Y.: Hybrid finite element methods for the Signorini problem. Math. Comp. 72, 1117–1145 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Brezzi F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. Rev. Franç. Automatique Inform. Rech. Opér., Sér. Rouge Anal. Numér. 8, 129–151 (1974)

    MathSciNet  Google Scholar 

  13. Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)

    MATH  Google Scholar 

  14. Brezzi F., Hager W.W., Raviart P.-A.: Error estimates for the finite element solution of variational inequalities. I. Primal theory. Numer. Math. 28, 431–443 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  15. Brezzi F., Hager W.W., Raviart P.-A.: Error estimates for the finite element solution of variational inequalities. II. Mixed methods. Numer. Math. 31, 1–16 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chen Z.: On the augmented Lagrangian approach to Signorini elastic contact problem. Numer. Math. 88, 641–659 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chen Z., Nochetto R.H.: Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84, 527–548 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Christensen P.W., Pang J.S.: Frictional, contact algorithms based on semismooth Newton methods. In: Fukushima, M., Qi, L. (eds) Reformulation–Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, pp. 81–116. Kluwer, Dordrecht (1998)

    Google Scholar 

  19. Ciarlet P.G.: The finite element method for elliptic problems. In: Ciarlet, P.G., Lions, J.L. (eds) Handbook of Numerical Analysis, vol. II, Part 1, pp. 17–352. North-Holland, Amsterdam (1991)

    Google Scholar 

  20. Clément P.: Approximation by finite elements functions using local regularization. RAIRO Anal. Numer. 9, 77–84 (1975)

    Google Scholar 

  21. Coorevits P., Hild P., Lhalouani K., Sassi T.: Mixed finite element methods for unilateral problems: convergence analysis and numerical studies. Math. Comp. 71, 1–25 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and operator-splitting methods in nonlinear mechanics. In: SIAM Studies in Applied Mathematics, vol. 9. SIAM, Philadelphia (1989)

  23. Grisvard P.: Elliptic Problems in Nonsmooth Domains. Pitman, London (1985)

    MATH  Google Scholar 

  24. Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. American Mathematical Society, Providence (2002)

  25. Hansbo A., Hansbo P.: An unfitted finite element method based on Nitsche’s method for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191, 5537–5552 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hansbo A., Hansbo P., Larson M.G.: A finite element method on composite grids based on Nitsche’s method. Math. Model. Numer. Anal. 37, 495–514 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hansbo P., Lovadina C., Perugia I., Sangalli G.: A lagrange multiplier method for the finite element solution of elliptic interface problems using nonmatching meshes. Numer. Math. 100, 91–115 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Haslinger J., Hlaváček I.: Contact between elastic bodies—2. Finite element analysis. Aplikace Matematiky 26, 263–290 (1981)

    MATH  MathSciNet  Google Scholar 

  29. Haslinger J., Hlaváček I., Nečas J.: Numerical methods for unilateral problems in solid mechanics. In: Ciarlet, P.G., Lions, J.-L. (eds) Handbook of Numerical Analysis, vol. IV, Part 2, pp. 313–485. North-Holland, Amsterdam (1996)

    Google Scholar 

  30. Haslinger J., Lovišek J.: Mixed variational formulation of unilateral problems. Commentat. Math. Univ. Carol. 21, 231–246 (1980)

    MATH  Google Scholar 

  31. Haslinger J., Renard Y.: A new fictitious domain approach inspired by the extended finite element method. SIAM J. Numer. Anal. 47(2), 1474–1499 (2009)

    Article  MathSciNet  Google Scholar 

  32. Heintz P., Hansbo P.: Stabilized Lagrange multiplier methods for bilateral elastic contact with friction. Comput. Methods Appl. Mech. Eng. 195, 4323–4333 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Hild P., Laborde P.: Quadratic finite element methods for unilateral contact problems. Appl. Numer. Math. 41, 401–421 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Hild P., Renard Y.: An error estimate for the Signorini problem with Coulomb friction approximated by finite elements. SIAM J. Numer. Anal. 45, 2012–2031 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Hüeber S., Wohlmuth B.: An optimal error estimate for nonlinear contact problems. SIAM J. Numer. Anal. 43, 156–173 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Hughes T., Franca L.P.: A new finite element formulation for computational fluid dynamics. VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces. Comput. Methods Appl. Mech. Eng. 65, 85–96 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  37. Khenous H., Pommier J., Renard Y.: Hybrid discretization of the Signorini problem with Coulomb friction, theoretical aspects and comparison of some numerical solvers. Appl. Numer. Math. 56, 163–192 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  38. Kikuchi N., Oden J.T.: Contact Problems in Elasticity. SIAM, Philadelphia (1988)

    MATH  Google Scholar 

  39. Laursen T.: Computational Contact and Impact Mechanics. Springer, Berlin (2002)

    MATH  Google Scholar 

  40. Lions J.-L., Magenes E.: Problèmes aux Limites non Homogènes. Dunod, Paris (1968)

    MATH  Google Scholar 

  41. Moussaoui M., Khodja K.: Regularité des solutions d’un problème mêlé Dirichlet–Signorini dans un domaine polygonal plan. Commun. Partial Differ. Equ. 17, 805–826 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  42. Nicaise S.: About the Lamé system in a polygonal or a polyhedral domain and a coupled problem between the Lamé system and the plate equation. I: Regularity of the solutions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 19, 327–361 (1992)

    MATH  MathSciNet  Google Scholar 

  43. Nitsche J.: Über ein Variationsprinzip zur Lösung von Dirichlet–Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Univ. Hamburg 36, 9–15 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  44. Pommier, J., Renard, Y.: Getfem++, an open source generic C++ library for finite element methods. http://home.gna.org/getfem/

  45. Renard Y.: A uniqueness criterion for the Signorini problem with Coulomb friction. SIAM J. Math. Anal. 38, 452–467 (2006)

    Article  MathSciNet  Google Scholar 

  46. Rössle A.: Corner singularities and regularity of weak solutions for the two-dimensional Lamé equations on domains with angular corners. J. Elast. 60, 57–75 (2000)

    Article  MATH  Google Scholar 

  47. Stenberg R.: On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63, 139–148 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  48. Wriggers P.: Computational Contact Mechanics. Wiley, New York (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Renard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hild, P., Renard, Y. A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics. Numer. Math. 115, 101–129 (2010). https://doi.org/10.1007/s00211-009-0273-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0273-z

Mathematics Subject Classification (2000)

Navigation