Skip to main content
Log in

Approximation of solution operators of elliptic partial differential equations by \({\mathcal{H}}\)- and \({\mathcal{H}^2}\)-matrices

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We investigate the problem of computing the inverses of stiffness matrices resulting from the finite element discretization of elliptic partial differential equations. Since the solution operators are non-local, the inverse matrices will in general be dense, therefore representing them by standard techniques will require prohibitively large amounts of storage. In the field of integral equations, a successful technique for handling dense matrices efficiently is to use a data-sparse representation like the popular multipole method. In this paper we prove that this approach can be generalized to cover inverse matrices corresponding to partial differential equations by switching to data-sparse \({\mathcal{H}}\)- and \({\mathcal{H}^2}\)-matrices. The key results are existence proofs for local low-rank approximations of the solution operator and its discrete counterpart, which give rise to error estimates for \({\mathcal{H}}\)- and \({\mathcal{H}^2}\)-matrix approximations of the entire matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bebendorf M.: Why finite element discretizations can be factored by triangular hierarchical matrices. SIAM J. Numer. Anal. 45(4), 1472–1494 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bebendorf M., Hackbusch W.: Existence of \({\mathcal{H}}\)-matrix approximants to the inverse FE-matrix of elliptic operators with L -coefficients. Numer. Math. 95, 1–28 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bernardi C., Girault V.: A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35(5), 1893–1916 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Börm S.: Data-sparse approximation of non-local operators by \({\mathcal{H}^2}\)-matrices. Linear Algebra Appl. 422, 380–403 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Börm S.: Construction of data-sparse \({\mathcal{H}^2}\)-matrices by hierarchical compression. SIAM J. Sci. Comput. 31(3), 1820–1839 (2009)

    Article  MathSciNet  Google Scholar 

  6. Börm, S., Grasedyck, L., Hackbusch, W.: Hierarchical matrices. Lecture Note 21 of the Max Planck Institute for Mathematics in the Sciences (2003)

  7. Börm S., Hackbusch W.: Data-sparse approximation by adaptive \({\mathcal{H}^2}\)-matrices. Computing 69, 1–35 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ciarlet, P.G.: The finite element method for elliptic problems. SIAM (2002)

  9. Clément P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9, 77–84 (1975)

    Google Scholar 

  10. Dahmen W., Faermann B., Graham I.G., Hackbusch W., Sauter S.A.: Inverse inequalities on non-quasiuniform meshes and applications to the mortar element method. Math. Comp. 73, 1107–1138 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Graham I.G., Lechner P., Scheichl R.: Domain decomposition for multiscale PDEs. Numer. Math. 106, 589–626 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grasedyck, L.: Theorie und Anwendungen Hierarchischer Matrizen. Doctoral thesis, Universität Kiel (2001)

  13. Grasedyck L., Hackbusch W.: Construction and arithmetics of \({\mathcal{H}}\)-matrices. Computing 70, 295–334 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grasedyck, L., Kriemann, R., LeBorne, S.: Parallel black box domain decomposition based \({\mathcal{H}}\)-LU preconditioning. Technical Report 115, Max Planck Institute for Mathematics in the Sciences, Leipzig (2005)

  15. Hackbusch W.: Multi-Grid Methods and Applications. Springer, Berlin (1985)

    MATH  Google Scholar 

  16. Hackbusch W.: A sparse matrix arithmetic based on \({\mathcal{H}}\)-matrices. Part I: Introduction to \({\mathcal{H}}\)-matrices. Computing 62, 89–108 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hackbusch W., Khoromskij B.N., Sauter S.A.: On \({\mathcal{H}^2}\)-matrices. In: Bungartz, H., Hoppe, R., Zenger, C. (eds) Lectures on Applied Mathematics, pp. 9–29. Springer, Berlin (2000)

    Google Scholar 

  18. Schenk O., Gärtner K., Fichtner W., Stricker A.: PARDISO: A high-performance serial and parallel sparse linear solver in semiconductor device simulation. J. Future Gener. Comput. Syst. 18, 69–78 (2001)

    Article  MATH  Google Scholar 

  19. Scott L.R., Zhang S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54(190), 483–493 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Xu J., Zhu Y.: Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients. Math. Models Meth. Appl. Sci. 18(1), 77–105 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Börm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Börm, S. Approximation of solution operators of elliptic partial differential equations by \({\mathcal{H}}\)- and \({\mathcal{H}^2}\)-matrices. Numer. Math. 115, 165–193 (2010). https://doi.org/10.1007/s00211-009-0278-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0278-7

Mathematics Subject Classification (2000)

Navigation