Skip to main content
Log in

Faster least squares approximation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Least squares approximation is a technique to find an approximate solution to a system of linear equations that has no exact solution. In a typical setting, one lets n be the number of constraints and d be the number of variables, with \({n \gg d}\). Then, existing exact methods find a solution vector in O(nd 2) time. We present two randomized algorithms that provide accurate relative-error approximations to the optimal value and the solution vector of a least squares approximation problem more rapidly than existing exact algorithms. Both of our algorithms preprocess the data with the Randomized Hadamard transform. One then uniformly randomly samples constraints and solves the smaller problem on those constraints, and the other performs a sparse random projection and solves the smaller problem on those projected coordinates. In both cases, solving the smaller problem provides relative-error approximations, and, if n is sufficiently larger than d, the approximate solution can be computed in O(nd ln d) time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ailon, N., Chazelle, B.: Approximate nearest neighbors and the fast Johnson–Lindenstrauss transform. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 557–563 (2006)

  2. Ailon, N., Liberty, E.: Fast dimension reduction using Rademacher series on dual BCH codes. In Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1–9, (2008)

  3. Arora, S., Hazan, E., Kale, S.: A fast random sampling algorithm for sparsifying matrices. In: Proceedings of the 10th International Workshop on Randomization and Computation, pp. 272–279 (2006)

  4. Avron, H., Maymounkov, P., Toledo, S.: Blendenpik: Supercharging LAPACK’s least-squares solver. Manuscript (2009)

  5. Avron, H., Maymounkov, P., Toledo, S.: Blendenpik: Supercharging LAPACK’s least-squares solver. SIAM J. Scientific Comput. (2010, to appear)

  6. Ben-Israel A., Greville T.N.E.: Generalized Inverses: Theory and Applications. Springer, New York (2003)

    MATH  Google Scholar 

  7. Bhatia R.: Matrix Analysis. Springer-Verlag, New York (1997)

    Google Scholar 

  8. Clarkson, K.L., Woodruff, D.P.: Numerical linear algebra in the streaming model. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 205–214 (2009)

  9. Coppersmith D., Winograd S.: Matrix multiplication via arithmetic progressions. J. Symbolic Comput. 9(3), 251–280 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dahlquist G., Sjöberg B., Svensson P.: Comparison of the method of averages with the method of least squares. Math. Comput. 22(104), 833–845 (1968)

    MATH  Google Scholar 

  11. Drineas P., Kannan R., Mahoney M.W.: Fast Monte Carlo algorithms for matrices I: approximating matrix multiplication. SIAM J. Comput. 36, 132–157 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Drineas, P., Mahoney, M.W., Muthukrishnan, S.: Sampling algorithms for 2 regression and applications. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1127–1136 (2006)

  13. Drineas P., Mahoney M.W., Muthukrishnan S.: Relative-error CUR matrix decompositions. SIAM J. Matrix Anal. Appl. 30, 844–881 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Drineas, P., Mahoney, M.W., Muthukrishnan, S., Sarlós, T.: Faster least squares approximation. Technical report. Preprint: arXiv:0710.1435 (2007)

  15. Feige U., Ofek E.: Spectral techniques applied to sparse random graphs. Random Struct. Algorithms 27(2), 251–275 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Golub G.H., Van Loan C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  17. Ibarra O.H., Moran S., Hui R.: A generalization of the fast LUP matrix decomposition algorithm and applications. J. Algorithms 3, 45–56 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Matoušek J.: On variants of the Johnson–Lindenstrauss lemma. Random Struct. Algorithms 33(2), 142–156 (2008)

    Article  MATH  Google Scholar 

  19. Motwani R., Raghavan P.: Randomized Algorithms. Cambridge University Press, New York (1995)

    MATH  Google Scholar 

  20. Nguyen, N.H., Do, T.T., Tran, T.D.: A fast and efficient algorithm for low-rank approximation of a matrix. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 215–224 (2009)

  21. Oliveira, R.I.: Sums of random Hermitian matrices and an inequality by Rudelson. arXiv:1004.3821v1 (2010)

  22. Rokhlin V., Tygert M.: A fast randomized algorithm for overdetermined linear least-squares regression. Proc. Natl. Acad. Sci. USA 105(36), 13212–13217 (2008)

    Article  MathSciNet  Google Scholar 

  23. Rudelson, M., Vershynin, R.: Sampling from large matrices: an approach through geometric functional analysis. J. ACM, 54(4):Article 21 (2007)

    Google Scholar 

  24. Sarlós, T.: Improved approximation algorithms for large matrices via random projections. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, pp. 143–152 (2006)

  25. Stewart G.W., Sun J.G.: Matrix Perturbation Theory. Academic Press, New York (1990)

    MATH  Google Scholar 

  26. Stigler S.M.: The History of Statistics: The Measurement of Uncertainty before 1900. Harvard University Press, Cambridge (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petros Drineas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drineas, P., Mahoney, M.W., Muthukrishnan, S. et al. Faster least squares approximation. Numer. Math. 117, 219–249 (2011). https://doi.org/10.1007/s00211-010-0331-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-010-0331-6

Mathematics Subject Classification (2000)

Navigation