Skip to main content
Log in

A multiscale Darcy–Brinkman model for fluid flow in fractured porous media

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The aim of this work is to present a reduced mathematical model for describing fluid flow in porous media featuring open channels or fractures. The Darcy’s law is assumed in the porous domain while the Stokes–Brinkman equations are considered in the fractures. We address the case of fractures whose thickness is very small compared to the characteristic diameter of the computational domain, and describe the fracture as if it were an interface between porous regions. We derive the corresponding interface model governing the fluid flow in the fracture and in the porous media, and establish the well-posedness of the coupled problem. Further, we introduce a finite element scheme for the approximation of the coupled problem, and discuss solution strategies. We conclude by showing the numerical results related to several test cases and compare the accuracy of the reduced model compared with the non-reduced one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ainsworth M., Sherwin S.: Domain decomposition preconditioners for p and hp finite element approximation of Stokes equations. Comput. Methods Appl. Mech. Eng. 175(3–4), 243–266 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alboin, C., Jaffré, J., Roberts, J.E., Serres, C.: Modeling fractures as interfaces for flow and transport in porous media. In: Fluid Flow and Transport in Porous Media: Mathematical and Numerical Treatment (South Hadley, MA, 2001). Contemp. Math., vol. 295, pp. 13–24. Amer. Math. Soc., Providence (2002)

  3. Angot P., Boyer F., Hubert F.: Asymptotic and numerical modelling of flows in fractured porous media. Math. Model. Numer. Anal. 43(2), 239–275 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Averbuch A., Israeli M., Vozovoi L.: A fast Poisson solver of arbitrary order accuracy in rectangular regions. SIAM J. Sci. Comput. 19(3), 933–952 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beavers G., Joseph D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  6. Bernhardt P.A., Brackbill J.U.: Solution of elliptic equations using fast Poisson solvers. J. Comput. Phys. 53(3), 382–394 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bogdanov, I.I., Mourzenko, V.V., Thovert, J.F., Adler, P.M.: Two-phase flow through fractured porous media. Phys. Rev. E 68(2), 026,703 (2003). doi:10.1103/PhysRevE.68.026703

    Google Scholar 

  8. Brenner S.C.: A two-level additive Schwarz preconditioner for the stationary Stokes equations. Adv. Comput. Math. 4(1–2), 111–126 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao Z.H.: Constraint Schur complement preconditioners for nonsymmetric saddle point problems. Appl. Numer. Math. 59(1), 151–169 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carvalho L.M., Giraud L., Le Tallec P.: Algebraic two-level preconditioners for the Schur complement method. SIAM J. Sci. Comput. 22(6), 1987–2005 (2000)

    Article  MathSciNet  Google Scholar 

  11. Casarin M.A.: Schwarz preconditioners for the spectral element discretization of the steady Stokes and Navier-Stokes equations. Numer. Math. 89(2), 307–339 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chang S.C.: Solution of elliptic PDEs by fast Poisson solvers using a local relaxation factor. J. Comput. Phys. 67(1), 91–123 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. D’Angelo C., Quarteroni A.: On the coupling of 1d and 3D diffusion-reaction equations. Application to tissue perfusion problems. Math. Models Methods Appl. Sci. 18(8), 1481–1504 (2007)

    Article  MathSciNet  Google Scholar 

  14. Darcy, H.: Les Fontaines Publiques de la Ville de Dijon. Dalmont (1856)

  15. Deuflhard P., Hochmuth R.: Multiscale analysis of thermoregulation in the human microvascular system. Math. Methods Appl. Sci. 27(8), 971–989 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Discacciati M., Quarteroni A.: Navier-Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Rev. Mater. Comput. 22(2), 315–426 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Elman H.C.: Approximate Schur complement preconditioners on serial and parallel computers. SIAM J. Sci. Stat. Comput. 10(3), 581–605 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ern A., Guermond J.L.: Theory and Practice of Finite Elements. Springer, Berlin (2004)

    MATH  Google Scholar 

  19. Formaggia L., Gerbeau J.F., Nobile F., Quarteroni A.: On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191(6–7), 561–582 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Formaggia L., Quarteroni A., Veneziani A.: Cardiovascular Mathematics. Springer, Milan (2009)

    Book  MATH  Google Scholar 

  21. Frih N., Roberts J.E., Saada A.: Modeling fractures as interfaces: a model for Forchheimer fractures. Comput. Geosci. 12(1), 91–104 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Giraud L., Tuminaro R.S.: Schur complement preconditioners for anisotropic problems. IMA J. Numer. Anal. 19(1), 1–18 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Glowinski R.: On a new preconditioner for the Stokes problem. Mat. Apl. Comput. 6(2), 123–140 (1987)

    MathSciNet  MATH  Google Scholar 

  24. Jaffré, J.: Numerical calculation of the flux across an interface between two rock types of a porous medium for a two-phase flow. In: Hyperbolic Problems: Theory, Numerics, Applications (Stony Brook, NY, 1994), pp. 165–177. World Scientific, River Edge (1996)

  25. Jaffré J., Martin V., Roberts J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26, 1667–1691 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jager W., Mikelic A.: On the interface boundary condition of Beavers, Joseph and Saffman. SIAM J. Appl. Math. 60, 1111–1127 (2000)

    Article  MathSciNet  Google Scholar 

  27. Lee D.: Boundary collocation fast Poisson solver on irregular domains. Korean J. Comput. Appl. Math. 8(1), 27–44 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Lesinigo, M.: Analisi di modelli multiscala per fluidi in mezzi porosi con fratture. Master thesis, Politecnico di Milano (2007/2008)

  29. Liniger, W.: A quasi-direct fast Poisson solver for general regions. In: Proceedings of the 3rd International Congress on Computational and Applied Mathematics (Leuven, 1988), vol. 28, pp. 25–47 (1989)

  30. Martin V., Jaffré J., Roberts J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. McKenney A., Greengard L., Mayo A.: A fast Poisson solver for complex geometries. J. Comput. Phys. 118(2), 348–355 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Moriya, K., Nodera, T.: Computing the preconditioner for the Schur complement. ANZIAM J. 46(C), C394–C408 (2004/05)

    Google Scholar 

  33. Onana A., Kwankam S.Y., Zoue E.: A fast Poisson solver. Period. Math. Hungar. 28(2), 89–101 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Oswald P.: An optimal multilevel preconditioner for solenoidal approximations of the two-dimensional Stokes problem. IMA J. Numer. Anal. 18(2), 207–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Quarteroni A.: Numerical Models for Differential Problems. Springer, Milan (2009)

    Book  MATH  Google Scholar 

  36. Quarteroni A., Veneziani A.: Analysis of a geometrical multiscale model based on the coupling of ODEs and PDEs for blood flow simulations. Multiscale Model. Simul. 1(2), 173–195 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Roberts J., Thomas J.: Handbook of Numerical Analysis, vol. 2. Elsevier, Amsterdam (1990)

    Google Scholar 

  38. Saad, Y.: Schur complement preconditioners for distributed general sparse linear systems. In: Domain Decomposition Methods in Science and Engineering XVI. Lect. Notes Comput. Sci. Eng., vol. 55, pp. 127–138. Springer, Berlin (2007)

  39. Saffman P.: On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 1, 93–101 (1971)

    Google Scholar 

  40. Schröder, J., Trottenberg, U., Witsch, K.: On fast Poisson solvers and applications. In: Numerical Treatment of Differential Equations (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1976), pp. 153–187. Lecture Notes in Math., vol. 631. Springer, Berlin (1978)

  41. Sharipov, R.A.: Course of Differential Geometry. Bashkir State University (1996)

  42. Silvester D., Wathen A.: Fast iterative solution of stabilised Stokes systems. II. Using general block preconditioners. SIAM J. Numer. Anal. 31(5), 1352–1367 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  43. Swarztrauber, P.N.: Fast Poisson solvers. In: Studies in Numerical Analysis, MAA Stud. Math., vol. 24, pp. 319–370. Math. Assoc. America, Washington (1984)

  44. Wathen A., Silvester D.: Fast iterative solution of stabilised Stokes systems. I. Using simple diagonal preconditioners. SIAM J. Numer. Anal. 30(3), 630–649 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Lesinigo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lesinigo, M., D’Angelo, C. & Quarteroni, A. A multiscale Darcy–Brinkman model for fluid flow in fractured porous media. Numer. Math. 117, 717–752 (2011). https://doi.org/10.1007/s00211-010-0343-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-010-0343-2

Mathematics Subject Classification (2000)

Navigation