Skip to main content
Log in

Rigorous computation of smooth branches of equilibria for the three dimensional Cahn–Hilliard equation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we propose a new general method to compute rigorously global smooth branches of equilibria of higher-dimensional partial differential equations. The theoretical framework is based on a combination of the theory introduced in Global smooth solution curves using rigorous branch following (van den Berg et al., Math. Comput. 79(271):1565–1584, 2010) and in Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs (Gameiro and Lessard, J. Diff. Equ. 249(9):2237–2268, 2010). Using this method, one can obtain proofs of existence of global smooth solution curves of equilibria for large (continuous) parameter ranges and about local uniqueness of the solutions on the curve. As an application, we compute several smooth branches of equilibria for the three-dimensional Cahn–Hilliard equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van den Berg J.B., Lessard J.-P.: Chaotic braided solutions via rigorous numerics: chaos in the Swift–Hohenberg equation. SIAM J. Appl. Dyn. Syst 7(3), 988–1031 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. van den Berg J.B., Lessard J.-P., Mischaikow K.: Global smooth solution curves using rigorous branch following. Math. Comput. 79(271), 1565–1584 (2010)

    Article  MATH  Google Scholar 

  3. Breuer B., McKenna P.J., Plum M.: Multiple solutions for a semilinear boundary value problem: a computational multiplicity proof. J. Diff. Equ. 195(1), 243–269 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cahn J.W., Hilliard J.E.: Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  5. Cahn J.W.: Free energy of a nonuniform system II. Thermodynamic basis. J. Chem. Phys. 30, 1121–1124 (1959)

    Article  Google Scholar 

  6. Cahn J.W., Hilliard J.E.: Free energy of a nonuniform system III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31, 688–699 (1959)

    Article  Google Scholar 

  7. Chow, S.N., Hale, J.K.: Methods of bifurcation theory, vol. 251. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science]. Springer-Verlag, New York (1982)

  8. Day S., Hiraoka Y., Mischaikow K., Ogawa T.: Rigorous numerics for global dynamics: a study of the Swift–Hohenberg equation. SIAM J. Appl. Dyn. Syst. 4(1), 1–31 (2005) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  9. Day S., Lessard J.-P., Mischaikow K.: Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal. 45(4), 1398–1424 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gameiro M., Lessard J.-P.: Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs. J. Diff. Equ. 249(9), 2237–2268 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gameiro M., Lessard J.-P., Mischaikow K.: Validated continuation over large parameter ranges for equilibria of PDEs. Math. Comput. Simul. 79(4), 1368–1382 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Heywood J.G., Nagata W., Xie W.: A numerically based existence theorem for the Navier–Stokes equations. J. Math. Fluid Mech. 1(1), 5–23 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Keller H.B.: Lectures on numerical methods in bifurcation problems, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 79. Springer-Verlag, Berlin (1987)

    Google Scholar 

  14. Kim M., Nakao M.T., Watanabe Y., Nishida T.: A numerical verification method of bifurcating solutions for 3-dimensional Rayleigh–Bnard problems. Numerische Mathematik 111(3), 389–406 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lessard J.-P.: Recent advances about the uniqueness of the slowly oscillating periodic solutions of Wright’s equation. J. Diff. Equ. 248(5), 992–1016 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Maier-Paape S., Mischaikow K., Wanner T.: Structure of the attractor of the Cahn–Hilliard equation on a square. Int. J. Bifurc. Chaos Appl. Sci. Engrg. 17(4), 1221–1263 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Maier-Paape S., Miller U., Mischaikow K., Wanner T.: Rigorous numerics for the Cahn–Hilliard equation on the unit square. Rev. Mat. Complut. 21(2), 351–426 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Nakao M.T.: Numerical verification methods for solutions of ordinary and partial differential equations. Numer. Funct. Anal. Optim. 22(3–4), 321–356 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nakao M.T., Hashimoto K., Watanabe Y.: A numerical method to verify the invertibility of linear elliptic operators with applications to nonlinear problems. Computing 75(1), 1–14 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nakao, M.T., Yamamoto, N., Nishimura, Y.: Numerical verification of the solution curve for some parametrized nonlinear elliptic problem. In: Proceedings of third China–Japan seminar on mumerical mathematics, 238–245, Science Press, Beijing (1998)

  21. Plum M.: Explicit H 2-estimates and pointwise bounds for solutions of second-order elliptic boundary value problems. J. Math. Anal. Appl. 165(1), 36–61 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Plum M.: Existence and enclosure results for continua of solutions of parameter-dependent nonlinear boundary value problems. J. Comput. Appl. Math. 60(1–2), 187–200 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yamamoto N.: A numerical verification method for solutions of boundary value problems with local uniqueness by Banach’s fixed-point theorem. SIAM J. Numer. Anal. 35, 2004–2013 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zgliczyński P.: Rigorous numerics for dissipative partial differential equations. II. Periodic orbit for the Kuramoto–Sivashinsky PDE—a computer-assisted proof. Found. Comput. Math. 4(2), 157–185 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zgliczyński P., Mischaikow K.: Rigorous numerics for partial differential equations: the Kuramoto–Sivashinsky equation. Found. Comput. Math. 1, 255–288 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Lessard.

Additional information

Marcio Gameiro was partially supported by the JSPS Postdoctoral Fellowship No. P08016 and by the JSPS Grant-in-Aid for Scientific Research No. 2008016, Ministry of Education, Science, Technology, Culture and Sports, Japan. Jean-Philippe Lessard was partially supported by NSF grant DMS-0511115, by DARPA, and by DOE grant DE-FG02-05ER25711.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gameiro, M., Lessard, JP. Rigorous computation of smooth branches of equilibria for the three dimensional Cahn–Hilliard equation. Numer. Math. 117, 753–778 (2011). https://doi.org/10.1007/s00211-010-0350-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-010-0350-3

Mathematics Subject Classification (2010)

Navigation