Skip to main content
Log in

Smoothing factor, order of prolongation and actual multigrid convergence

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider the Fourier analysis of multigrid methods (of Galerkin type) for symmetric positive definite and semi-positive definite linear systems arising from the discretization of scalar partial differential equations (PDEs). We relate the so-called smoothing factor to the actual two-grid convergence rate and also to the convergence rate of the V-cycle multigrid. We derive a two-sided bound that defines an interval containing both the two-grid and V-cycle convergence rate. This interval is narrow and away from 1 when both the smoothing factor and an additional parameter are small enough. Besides the smoothing factor, the convergence mainly depends on the angle between the range of the prolongation and the eigenvectors of the system matrix associated with small eigenvalues. Nice V-cycle convergence is guaranteed if the tangent of this angle has an upper bound proportional to the eigenvalue, whereas nice two-grid convergence requires a bound proportional to the square root of the eigenvalue. We also discuss the well-known rule which relates the order of the prolongation to that of the differential operator associated to the problem. We first define a frequency based order which in most cases amounts to the so-called high frequency order as defined in Hemker (J Comput Appl Math 32:423–429, 1990). We give a firmer basis to the related order rule by showing that, together with the requirement of having the smoothing factor away from one, it provides necessary and sufficient conditions for having the two-grid convergence rate away from 1. A stronger condition is further shown to be sufficient for optimal convergence with the V-cycle. The presented results apply to rigorous Fourier analysis for regular discrete PDEs, and also to local Fourier analysis via the discussion of semi-positive systems as may arise from the discretization of PDEs with periodic boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben Israel A., Greville T.N.E.: Generalized Inverses: Theory and Applications. Wiley, New York (1974)

    MATH  Google Scholar 

  2. Brandt A.: Guide to multigrid development. In: Hackbusch, W., Trottenberg, U. (eds) Multigrid Methods. Lectures Notes in Mathematics No. 960, pp. 220–312. Springer, Berlin (1982)

    Google Scholar 

  3. Brandt A.: Rigorous quantitative analysis of multigrid, I: constant coefficients two-level cycle with L2-norm. SIAM J. Numer. Anal. 31, 1695–1730 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brezina M., Cleary A.J., Falgout R.D., Henson V.E., Jones J.E., Manteuffel T.A., McCormick S.F., Ruge J.W.: Algebraic multigrid based on element interpolation (AMGe). SIAM J. Sci. Comput. 22, 1570–1592 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chartier T., Falgout R.D., Henson V.E., Jones J., Manteuffel T., McCormick S., Ruge J., Vassilevski P.S.: Spectral AMGe (ρAMGe). SIAM J. Sci. Comput. 25, 1–26 (2004)

    Article  MathSciNet  Google Scholar 

  6. Donatelli M.: An algebraic generalization of local fourier analysis for grid transfer operators in multigrid based on Toeplitz matrices. Numer. Linear Algebra Appl. 17, 179–197 (2010)

    MathSciNet  Google Scholar 

  7. Hackbusch W.: Multi-grid Methods and Applications. Springer, Berlin (1985)

    MATH  Google Scholar 

  8. Hemker P.: On the order of prolongations and restrictions in multigrid procedures. J. Comput. Appl. Math. 32, 423–429 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mandel J., McCormick S.F., Ruge J.W.: An algebraic theory for multigrid methods for variational problems. SIAM J. Numer. Anal. 25, 91–110 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. McCormick S.F.: Multigrid methods for variational problems: general theory for the V-cycle. SIAM J. Numer. Anal. 22, 634–643 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Muresan A.C., Notay Y.: Analysis of aggregation-based multigrid. SIAM J. Sci. Comput. 30, 1082–1103 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Napov, A.: Algebraic analysis of V-cycle multigrid and aggregation-based two-grid methods. PhD thesis, Service de Métrologie Nucléaire, Université Libre de Bruxelles, Brussels, Belgium (2010)

  13. Napov A., Notay Y.: Comparison of bounds for V-cycle multigrid. Appl. Numer. Math. 60, 176–192 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Napov A., Notay Y.: When does two-grid optimality carry over to the V-cycle?. Numer. Linear Algebra Appl. 17, 273–290 (2010)

    MathSciNet  Google Scholar 

  15. Ruge J.W., Stüben K.: Algebraic multigrid (AMG). In: McCormick, S.F. (eds) Multigrid Methods. Frontiers in Applied Mathematics, vol. 3, pp. 73–130. SIAM, Philadelphia (1987)

    Google Scholar 

  16. Serra-Capizzano S.: Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs matrix-sequences. Numerische Mathematik 92, 433–465 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Stevenson, R.: On the validity of local mode analysis of multi-grid methods. PhD thesis, Utrecht University (1990)

  18. Stevenson R.: More on the order of prolongations and restrictions. Appl. Numer. Math. 58, 1875–1880 (2007)

    Article  MathSciNet  Google Scholar 

  19. Stüben K., Trottenberg K.U.: Multigrid methods: fundamental algorithms, model problem analysis and applications. In: Hackbusch, W., Trottenberg, U. (eds) Multigrid Methods. Lectures Notes in Mathematics No. 960, pp. 1–176. Springer, Berlin (1982)

    Google Scholar 

  20. Trottenberg U., Oosterlee C.W., Schüller A.: Multigrid. Academic Press, London (2001)

    MATH  Google Scholar 

  21. Vassilevski P.S.: Multilevel Block Factorization Preconditioners. Springer, New York (2008)

    MATH  Google Scholar 

  22. Wesseling P.: An Introduction to Multigrid Methods. Wiley, Chichester (1992)

    MATH  Google Scholar 

  23. Wienands R., Joppich W.: Practical Fourier Analysis for Multigrid Methods. Chapman & Hall/CRC Press, Boca Raton (2005)

    MATH  Google Scholar 

  24. Wienands R., Oosterlee C.W.: On three-grid Fourier analysis for multigrid. SIAM J. Sci. Comput. 23, 651–671 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yavneh I.: Coarse-grid correction for nonelliptic and singular perturbation problems. SIAM J. Sci. Comput. 19, 1682–1699 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem Napov.

Additional information

A. Napov was supported by the Belgian FNRS (“Aspirant”). Y. Notay was supported by the Belgian FNRS (“Directeur de recherches”).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Napov, A., Notay, Y. Smoothing factor, order of prolongation and actual multigrid convergence. Numer. Math. 118, 457–483 (2011). https://doi.org/10.1007/s00211-011-0362-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0362-7

Mathematics Subject Classification (2000)

Navigation