Skip to main content
Log in

Inf–sup conditions for twofold saddle point problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Necessary and sufficient conditions for existence and uniqueness of solutions are developed for twofold saddle point problems which arise in mixed formulations of problems in continuum mechanics. This work extends the classical saddle point theory to accommodate nonlinear constitutive relations and the twofold saddle structure. Application to problems in incompressible fluid mechanics employing symmetric tensor finite elements for the stress approximation is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold D.N., Awanou G., Winther R.: Finite elements for symmetric tensors in three dimensions. Math. Comput. 77(263), 1229–1251 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold D.N., Brezzi F., Douglas J. Jr: PEERS: a new mixed finite element for plane elasticity. Jpn. J. Appl. Math. 1(2), 347–367 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold D.N., Douglas J. Jr, Gupta C.P.: A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45(1), 1–22 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, D.N., Falk, R.S., Winther R.: Differential complexes and stability of finite element methods. I. The de Rham complex. In: Compatible Spatial Discretizations. Volume 142 of IMA Vol. Math. Appl., pp 24–46. Springer, New York (2006)

  5. Arnold, D.N., Falk, R.S., Winther R.: Differential complexes and stability of finite element methods. II. The elasticity complex. In: Compatible Spatial Discretizations. Volume 142 of IMA Vol. Math. Appl., pp 47–67. Springer, New York (2006)

  6. Arnold D.N., Falk R.S., Winther R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comput. 76(260), 1699–1723 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arnold D.N., Winther R.: Mixed finite elements for elasticity. Numer. Math. 92(3), 401–419 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Babuška I.: The finite element method with Lagrangian multipliers. Numer. Math. 20, 179–192 (1973)

    Article  MATH  Google Scholar 

  9. Baranger J., Najib K., Sandri D.: Numerical analysis of a three-fields model for a quasi-Newtonian flow. Comput. Methods Appl. Mech. Eng. 109(3–4), 281–292 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barrett J.W., Liu W.B.: Finite element error analysis of a quasi-Newtonian flow obeying the Carreau or power law. Numer. Math. 64(4), 433–453 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barrett J.W., Liu W.B.: Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow. Numer. Math. 68(4), 437–456 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, vol. 15, 2nd edn. Springer-Verlag, New York (2002)

  13. Brezzi F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8(R-2), 129–151 (1974)

    MathSciNet  Google Scholar 

  14. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. In: Springer Series in Computational Mathematics, vol. 15. Springer-Verlag, New York (1991)

  15. Bustinza R., Gatica G.N., González M., Meddahi S., Stephan E.P.: Enriched finite element subspaces for dual-dual mixed formulations in fluid mechanics and elasticity. Comput. Methods Appl. Mech. Eng. 194(2–5), 427–439 (2005)

    Article  MATH  Google Scholar 

  16. Chen Z.: Analysis of expanded mixed methods for fourth-order elliptic problems. Numer. Methods Partial Differ. Equ. 13(5), 483–503 (1997)

    Article  MATH  Google Scholar 

  17. Chen Z.: Expanded mixed finite element methods for linear second-order elliptic problems. I. RAIRO Modél. Math. Anal. Numér. 32(4), 479–499 (1998)

    MATH  Google Scholar 

  18. Cockburn B., Gopalakrishnan J.: Error analysis of variable degree mixed methods for elliptic problems via hybridization. Math. Comput. 74(252), 1653–1677 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ervin V.J., Howell J.S., Stanculescu I.: A dual-mixed approximation method for a three-field model of a nonlinear generalized Stokes problem. Comput. Methods Appl. Mech. Eng. 197(33–40), 2886–2900 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ervin V.J., Jenkins E.W., Sun S.: Coupled generalized non-linear Stokes flow with flow through a porous media. SIAM J. Numer. Anal. 47(2), 929–952 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Farhloul M., Fortin M.: A new mixed finite element for the Stokes and elasticity problems. SIAM J. Numer. Anal. 30(4), 971–990 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Farhloul M., Fortin M.: Dual hybrid methods for the elasticity and the Stokes problems: a unified approach. Numer. Math. 76(4), 419–440 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Farhloul M., Zine A.M.: A posteriori error estimation for a dual mixed finite element approximation of non-Newtonian fluid flow problems. Int. J. Numer. Anal. Model. 5(2), 320–330 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Gatica G.N.: Solvability and Galerkin approximations of a class of nonlinear operator equations. Z. Anal. Anwendungen 21(3), 761–781 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Gatica G.N., Gatica L.F.: On the a priori and a posteriori error analysis of a two-fold saddle-point approach for nonlinear incompressible elasticity. Int. J. Numer. Methods Eng. 68(8), 861–892 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gatica G.N., Gatica L.F., Stephan E.P.: A dual-mixed finite element method for nonlinear incompressible elasticity with mixed boundary conditions. Comput. Methods Appl. Mech. Eng. 196(35–36), 3348–3369 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gatica G.N., González M., Meddahi S.: A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. I. A priori error analysis. Comput. Methods Appl. Mech. Eng. 193(9–11), 881–892 (2004)

    Article  MATH  Google Scholar 

  28. Gatica G.N., Márquez A., Meddahi S.: A new dual-mixed finite element method for the plane linear elasticity problem with pure traction boundary conditions. Comput. Methods Appl. Mech. Eng. 197(9–12), 1115–1130 (2008)

    Article  MATH  Google Scholar 

  29. Gatica G.N., Meddahi S.: A fully discrete Galerkin scheme for a two-fold saddle point formulation of an exterior nonlinear problem. Numer. Funct. Anal. Optim. 22(7–8), 885–912 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gatica G.N., Sayas F.J.: Characterizing the inf-sup condition on product spaces. Numer. Math. 109(2), 209–231 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gatica G.N., Stephan E.P.: A mixed-FEM formulation for nonlinear incompressible elasticity in the plane. Numer. Methods Partial Differ. Equ. 18(1), 105–128 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Girault, V., Raviart, P.A.: Finite element methods for Navier-Stokes equations. In: Springer Series in Computational Mathematics. Theory and Algorithms, vol. 5. Springer-Verlag, Berlin (1986)

  33. Glowinski, R., Marroco, A.: Sur l’approximation par éléments finis d’order un et la résolution par pénalisation dualité d’une classe de problèmes de Dirichlet non linéaires. RAIRO 9ème année, pp. 41–76 (1975)

  34. Johnson C.: A mixed finite element method for the Navier-Stokes equations. RAIRO Anal. Numér. 12(4), 335–348 (1978)

    MATH  Google Scholar 

  35. Manouzi H., Farhloul M.: Mixed finite element analysis of a non-linear three-fields Stokes model. IMA J. Numer. Anal. 21(1), 143–164 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Marsden J.E., Hughes T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  37. Ming P., Shi Z.: Dual combined finite element methods for non-Newtonian flow (II) parameter-dependent problem. ESAIM-M2AN 34(5), 1051–1067 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Roberts, J.E., Thomas, J.M.: Mixed and hybrid methods. In: Handbook of Numerical Analysis, vol. II. Handb. Numer. Anal., II, pp. 523–639. North-Holland, Amsterdam (1991)

  39. Scheurer B.: Existence et approximation de points selles pour certains problèmes non linéaires. RAIRO Anal. Numér. 11(4), 369–400 (1977)

    MathSciNet  MATH  Google Scholar 

  40. Stenberg R.: Analysis of mixed finite elements methods for the Stokes problem: a unified approach. Math. Comput. 42(165), 9–23 (1984)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason S. Howell.

Additional information

J. S. Howell: This material is based in part upon work supported by the Center for Nonlinear Analysis (CNA) under the National Science Foundation Grant No. DMS-0635983. N. J. Walkington: Supported in part by National Science Foundation Grants DMS-0811029. This work was also supported by the NSF through the Center for Nonlinear Analysis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howell, J.S., Walkington, N.J. Inf–sup conditions for twofold saddle point problems. Numer. Math. 118, 663–693 (2011). https://doi.org/10.1007/s00211-011-0372-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0372-5

Mathematics Subject Classification (2000)

Navigation