Skip to main content
Log in

Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We propose an asymptotic preserving nodal discretization of the hyperbolic heat equation, also known as the P 1 equation, on unstructured meshes in 2-D. This method, in diffusive regime, overcomes the problem of the inconsistent limit with diffusion, of classical multidimensional extensions of 1-D asymptotic preserving schemes, based on edge formulation. We provide both theoretical and numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aavatsmark I., Eigestad G.: Numerical convergence of the MPFA O-method and U-method for general quadrilateral grids. Int. J. Numer. Meth. Fluids 51, 939–961 (2006)

    Article  MATH  Google Scholar 

  2. Allaire G.: Numerical Analysis and Optimization. An Introduction to Mathematical Modelling and Numerical Simulation, pp. 42. Oxford University Press, Oxford (2007)

    Google Scholar 

  3. Buet C., Cordier S., Lucquin-Desreux B., Mancini S.: Diffusion limit of the lorentz model: asymptotic preserving schemes. ESAIM:M2AN 32(4), 631–655 (2002)

    Article  MathSciNet  Google Scholar 

  4. Buet C., Després B.: Asymptotic preserving and positive schemes for radiation hydrodynamics. JCP 215(2), 717–740 (2006)

    MATH  Google Scholar 

  5. Breil J., Maire P.-H.: A cell-centered diffusion scheme on two-dimensional unstructured meshes. JCP 224, 785–823 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Brunner, T.: Riemann solvers for time-dependent transport based on the maximum entropy and spherical harmonics closures. PhD thesis, Los Alamos

  7. Carré G., Del Pino S., Desprès B., Labourasse E.: A Cell-centered lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension. JCP 228(14), 5160–5183 (2009)

    MATH  Google Scholar 

  8. Degond P., Deluzet F., Sangam A., Vignal M.-H.: An asymptotic preserving scheme for the Euler equations in a strong magnetic field. J. Comput. Phys. 228, 3540–3558 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Desprès B.: Weak consistency of the cell centered lagrangian GLACE scheme on general mesh in any dimension. Comput. Methods Appl. Mech. Eng 199(41–44), 2669–2679 (2010)

    Article  MATH  Google Scholar 

  10. Droniou J., Eymard R., Gallouet T., Herbin R.: A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. (M3AS) 20(2), 265–295 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Droniou J., Le-Potier C.: Construction and convergence study of local-maximum-principe preserving schemes for elliptic equations. SIAM J. Numer. Anal. 49, 459–490 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dubroca, B., Feugeas, J.L.: Hiérarchie des modèles aux moments pour le transfert radiatif. C. R. Acad. Sci. Paris t.329, Serie I, pp. 915–920 (1999)

  13. Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problem on general nonconforming meshes. IMA J. Num. Anal. (2009)

  14. Gosse L., Toscani G.: An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations. C. R. Acad. Sci. Paris Ser. I 334, 337–342 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Greenberg, J., Leroux, A.Y.: A well balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal 33(1), (1996)

  16. Hirsch C.: Numerical computation of internal and external flows, vol. 1. Butterworth Heinemann, Oxford (2007)

    Google Scholar 

  17. Jin S., Levermore D.: Numerical schemes for hyperbolic conservation laws with stiff relaxation terms. JCP 126, 449–467 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Kershaw D.: Differencing of the diffusion equation in lagrangian hydrodynamic codes. JCP 39, 375–395 (1981)

    MathSciNet  MATH  Google Scholar 

  19. Kluth G., Després B.: Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme. J. Comp. Phys. 229, 9092–9118 (2010)

    Article  Google Scholar 

  20. Lemou, M., Mieussens, L.: A new symptotic preserving scheme based on micro–macro formulation for linear kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 31(1), 334–368

  21. Lipnikov K., Shashkov M., Svyatskiy D., Vassilevski Y.: Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. JCP 227, 492–512 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Lowrie R.B., Morel J.E.: Methods for hyperbolic systems with stiff relaxation. Int. J. Num. Methods Fluids 40, 413–423 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mazeran, C.: Sur la structure mathématique et l’approximation numérique de l’hydrodynamique lagrangienne bidimensionnelle. PhD thesis, University of Bordeaux (2007)

  24. Maire P-H., Abgrall R., Breil J., Ovadia J.: A cell-centered lagrangian scheme for two-dimensional compressible flow problems. SIAM J. Sci. Comput. 29(4), 1781–1824 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Polyanin A.D.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. Chapman Hall, Boca Raton (2002)

    MATH  Google Scholar 

  26. Sheng, Z., Yue, J., Yuan, G.: Monotone finite volume schemes of non-equilibrium radiation diffusion equations of distorted meshes. SIAM J. Sci. Comput. 31(4), 2915–2934

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Buet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buet, C., Després, B. & Franck, E. Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes. Numer. Math. 122, 227–278 (2012). https://doi.org/10.1007/s00211-012-0457-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0457-9

Mathematics Subject Classification (2010)

Navigation