Skip to main content
Log in

A general framework for solving Riemann–Hilbert problems numerically

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A new, numerical framework for the approximation of solutions to matrix-valued Riemann–Hilbert problems is developed, based on a recent method for the homogeneous Painlevé II Riemann–Hilbert problem. We demonstrate its effectiveness by computing solutions to other Painlevé transcendents. An implementation in Mathematica is made available online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz M.J., Segur H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (2006)

    Google Scholar 

  2. Berthold D., Hoppe W., Silbermann B.: A fast algorithm for solving the generalized airfoil equation. J. Comput. Appl. Math. 43, 185–219 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bornemann F.: On the numerical evaluation of Fredholm determinants. Math. Comput. 79, 871–915 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Bornemann F., Clarkson P., Deift P., Edelman A., Its A., Lozier D.: A request: the Painlevé project. Notices AMS 57, 1389 (2010)

    Google Scholar 

  5. Bornemann, F., Clarkson, P., Deift, P., Edelman, A., Its, A., Lozier, D.: A request: the Painlevé project. AMSTAT News (2010)

  6. Bornemann F., Clarkson P., Deift P., Edelman A., Its A., Lozier D.: Painlevé project on the web. Phys. Today 63, 10 (2010)

    Article  Google Scholar 

  7. Clenshaw C.W., Curtis A.R.: A method for numerical integration on an automatic computer. Numer. Math. 2, 197–205 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deift P.: Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach. AMS, Providence (2000)

    MATH  Google Scholar 

  9. Deift P., Zhou X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Bull. AMS 26, 119–124 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dienstfrey A.: The Numerical Solution of a Riemann–Hilbert Problem Related to Random Matrices and the Painlevé V ODE. Courant Institute of Mathematical Sciences, New York (1998)

    Google Scholar 

  11. Dow M.L., Elliott D.: The numerical solution of singular integral equations over (−1,1). SIAM J. Numer. Anal. 16, 1–115 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Elliott D.: The classical collocation method for singular integral equations. SIAM J. Numer. Anal. 19, 816–832 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elliott D.: Uniform asymptotic expansions of the Jacobi polynomials and an associated function. Math. Comput. 25, 309–315 (1971)

    Article  MATH  Google Scholar 

  14. Fokas A.S., Its A.R., Kapaev A.A., Novokshenov V.Y.: Painlevé Transcendents: The Riemann–Hilbert. AMS, Providence (2006)

    MATH  Google Scholar 

  15. Galkin P.V.: Estimates for the Lebesgue constants. Proc. Steklov Inst. Math. 109, 1–4 (1971)

    MathSciNet  Google Scholar 

  16. Greengard L., Helsing J.: On the numerical evaluation of elastostatic fields in locally isotropic two-dimensional composites. J. Mech. Phys. Solids 46, 1441–1462 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hastings S.P., McLeod J.B.: A boundary value problem associated with the second Painlevé transcendent and the Korteweg–de Vries equation. Arch. Rat. Mech. Anal. 73, 31–51 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Junghanns P., Rost K.: Matrix representations associated with collocation methods for Cauchy singular integral equations. Math. Methods Appl. Sci. 30, 1811–1821 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Junghanns P., Rost K.: Krylov subspace methods for Cauchy singular integral equations. Ser. Math. Inform. 19, 93–108 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Muskhelishvili, N.I.: Singular Integral Equations. Noordhoff, Groningen (1953) (based on the second Russian edition published in 1946)

  21. Nasser M.M.S.: Numerical solution of the Riemann–Hilbert problem. Punjab Univ. J. Math. 40, 9–29 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  23. Olver, S.: RHPackage. http://www.maths.usyd.edu.au/u/olver/projects/RHPackage.html

  24. Olver S.: Numerical solution of Riemann–Hilbert problems: Painlevé II. Found. Comput. Math. 11, 153–179 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Olver S.: Computing the Hilbert transform and its inverse. Math. Comput. 80, 1745–1767 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pearson, J.: Computation of hypergeometric functions, M.Sc. thesis, University of Oxford (2009)

  27. Tracy C.A., Widom H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wegert E.: An iterative method for solving nonlinear Riemann–Hilbert problems. J. Comput. Appl. Math. 29, 327 (1990)

    Article  MathSciNet  Google Scholar 

  29. Wegmann R.: Discrete Riemann–Hilbert problems, interpolation of simply closed curves, and numerical conformal mapping. J. Comput. Appl. Math. 23, 323–352 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wegmann R.: An iterative method for the conformal mapping of doubly connected regions. J. Comput. Appl. Math. 14, 79–98 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheehan Olver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olver, S. A general framework for solving Riemann–Hilbert problems numerically. Numer. Math. 122, 305–340 (2012). https://doi.org/10.1007/s00211-012-0459-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0459-7

Mathematics Subject Classification (2000)

Navigation