Skip to main content
Log in

A stochastic collocation method for the second order wave equation with a discontinuous random speed

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we propose and analyze a stochastic collocation method for solving the second order wave equation with a random wave speed and subjected to deterministic boundary and initial conditions. The speed is piecewise smooth in the physical space and depends on a finite number of random variables. The numerical scheme consists of a finite difference or finite element method in the physical space and a collocation in the zeros of suitable tensor product orthogonal polynomials (Gauss points) in the probability space. This approach leads to the solution of uncoupled deterministic problems as in the Monte Carlo method. We consider both full and sparse tensor product spaces of orthogonal polynomials. We provide a rigorous convergence analysis and demonstrate different types of convergence of the probability error with respect to the number of collocation points for full and sparse tensor product spaces and under some regularity assumptions on the data. In particular, we show that, unlike in elliptic and parabolic problems, the solution to hyperbolic problems is not in general analytic with respect to the random variables. Therefore, the rate of convergence may only be algebraic. An exponential/fast rate of convergence is still possible for some quantities of interest and for the wave solution with particular types of data. We present numerical examples, which confirm the analysis and show that the collocation method is a valid alternative to the more traditional Monte Carlo method for this class of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Arias, A.: A measure of earthquake intensity. In: Hansen, R.J. (ed.) Seismic Design for Nuclear Plants, pp. 438–483. The MIT Press, Cambridge (1970)

    Google Scholar 

  2. Babuska, I.M., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45, 1005–1034 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuska, I., Tempone, R., Zouraris, G.E.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42, 800–825 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babuska, I., Tempone, R., Zouraris, G.E.: Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation. Comput. Methods Appl. Mech. Eng. 194(1216), 1251–1294 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barthelmann, V., Novak, E., Ritter, K.: High dimensional polynomial interpolation on sparse grids. Adv. Comput. Math. 12, 273–288 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beck, J., Tempone, R., Nobile, F., Tamellini, L.: On the optimal approximation of stochastic PDEs by Galerkin and collocation methods. Math. Model. Meth. Appl. Sci. (2011, to appear)

  7. Canuto, C., Kozubek, T.: A fictitious domain approach to the numerical solution of PDEs in stochastic domains. Numer. Math. 107(2), 257–293 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  9. Charrier, J.: Strong and weak error estimates for elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50(1), 216–246 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Erdös, P., Turán, P.: On interpolation I. Quadrature- and mean-convergence in the Lagrange-interpolation. Ann. Math. (2) 38, 142–155 (1937)

    Article  Google Scholar 

  11. Evans, L.C.: Partial differential equations. Graduate Studies in Mathematics, vol. 19. AMS (1998)

  12. Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer Series Operation Research. Springer, New York (1996)

    Google Scholar 

  13. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)

    Book  MATH  Google Scholar 

  14. Gottlieb, D., Xiu, D.: Galerkin method for wave equations with uncertain coefficients. Commun. Comput. Phys. 3(2), 505–518 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Harbrecht, H., Schneider, R., Schwab, C.: Sparse second moment analysis for elliptic problems in stochastic domains. Numer. Math. 109, 385–414 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hörmander, L.: The analysis of linear partial differential operators III, pseudo-differential operators. Classics in Mathematics. Springer, Berlin (1994)

  17. Hosken, J.W.J.: Ricker wavelets in their various guises. First Break 6, 24–33 (1988)

    Google Scholar 

  18. John, F.: Partial Differential Equations. Springer, New York (1982)

    Google Scholar 

  19. Kreiss, H.-O., Lorenz, J.: Initial-boundary value problems and the Navier-Stokes equations. Classics in Applied Mathematics, vol. 47. SIAM, Philadelphia (2004)

  20. Kreiss, H.-O., Ortiz, O.E.: Some mathematical and numerical questions connected with first and second order time-dependent systems of partial differential equations. Lect. Notes Phys. 604, 359–370 (2002)

    Article  MathSciNet  Google Scholar 

  21. Kreiss, H.-O., Petersson, N.A., Yström, J.: Difference approximations for the second order wave equation. SIAM J. Numer. Anal. 40, 1940–1967 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Le Maitre, O.P., Knio, O.M., Najm, H.N., Ghanem, R.G.: Uncertainty propagation using Wiener-Haar expansions. J. Comput. Phys. 197(1), 28–57 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Le Maitre, O.P., Najm, H.N., Ghanem, R.G., Knio, O.M.: Multi-resolution analysis of Wiener-type uncertainty propagation schemes. J. Comput. Phys. 197(2), 502–531 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Levermore, C.D., Oliver, M.: Analyticity of solutions for a generalized Euler equation. J. Differ. Equ. 133, 321–339 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin, G., Su, C.-H., Karniadakis, G.E.: Predicting shock dynamics in the presence of uncertainties. J. Comput. Phys. 217(1), 260–276 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lin, G., Su, C.-H., Karniadakis, G.E.: Stochastic modeling of random roughness in shock scattering problems: theory and simulations. Comput. Methods Appl. Mech. Eng. 197(43–44), 3420–3434 (2006)

    MathSciNet  Google Scholar 

  27. Loéve, M.: Probability Theory I. Graduate Texts in Mathematics, vol. 45. Springer, New York (1977)

    Book  Google Scholar 

  28. Loéve, M.: Probability Theory II. Graduate Texts in Mathematics, vol. 46. Springer, New York (1978)

    Google Scholar 

  29. Matthies, H.G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194(1216), 1295–1331 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nobile, F., Tempone, R.: Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients. Int. J. Numer. Meth. Eng. 80, 979–1006 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2411–2442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2309–2345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Owhadi, H., Zhang, L.: Numerical homogenization of the acoustic wave equations with a continuum of scales. Comput. Methods Appl. Mech. Eng. 198, 397–406 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Poette, G., Després, B., Lucor, D.: Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228(7), 2443–2467 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rodino, L.: Linear Partial Differential Operators in Gevrey Spaces. World Scientific, Singapore (1993)

    Book  MATH  Google Scholar 

  36. Stolk, C.C.: On the modeling and inversion of seismic data. PhD Thesis, Utrecht University (2000)

  37. Tang, T., Zhou, T.: Convergence analysis for stochastic collocation methods to scalar hyperbolic equations with a random wave speed. Commun. Comput. Phys. 8(1), 226–248 (2010)

    MathSciNet  Google Scholar 

  38. Todor, R.A., Schwab, C.: Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. Numer. Anal. 27(2), 232–261 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tryoen, J., Le Maitre, O., Ndjinga, M., Ern, A.: Intrusive projection methods with upwinding for uncertain nonlinear hyperbolic systems. J. Comput. Phys. 229, 6485–6511 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tryoen, J., Le Maitre, O., Ndjinga, M., Ern, A.: Roe solver with entropy corrector for uncertain hyperbolic systems. J. Comput. Appl. Math. 235(2), 491–506 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, X., Karniadakis, G.E.: Long-term behavior of ploynomial chaos in stochastic flow simulations. Comput. Methods Appl. Mech. Eng. 195, 5582–5596 (2006)

    Article  Google Scholar 

  42. Wiener, N.: The homogeneous chaos. Am. J. Math. 60, 897–936 (1938)

    Article  MathSciNet  Google Scholar 

  43. Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xiu, D., Karniadakis, G.E.: Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput. Methods Appl. Mech. Eng. 191(43), 4927–4948 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xiu, D., Tartakovsky, D.M.: Numerical methods for differential equations in random domains. SIAM J. Sci. Comput. 28(3), 1167–1185 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Olof Runborg and Georgios Zouraris for stimulating discussions and Lorenzo Tamellini for providing parts of source codes for implementing the stochastic collocation algorithm. The first author would also like to thank the MOX center in Politecnico di Milano for a two month visit funded by the Italian grant FIRB-IDEAS (Project n. RBID08223Z) “Advanced numerical techniques for uncertainty quantification in engineering and life science problems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Motamed.

Additional information

This work was supported by the King Abdullah University of Science and Technology (AEA project “Bayesian earthquake source validation for ground motion simulation”), the VR project “Effektiva numeriska metoder för stokastiska differentialekvationer med tillämpningar”, and the PECOS center at ICES, University of Texas at Austin (Project Number 024550, Center for Predictive Computational Science). The second author was partially supported by the Italian grant FIRB-IDEAS (Project no. RBID08223Z) “Advanced numerical techniques for uncertainty quantification in engineering and life science problems”.

Appendix

Appendix

Lemma 10

Consider the 1D Cauchy problem for the scalar wave equation in the conservative form

$$\begin{aligned} u_{tt} - \partial _x \bigl ( c(x) \, \partial _x u \bigr ) = f(t,x), \qquad (t,x) \in (0,\infty ) \times \mathbb{R }, \end{aligned}$$
(52)

and in the non-conservative form

$$\begin{aligned} u_{tt} - c(x) \, \partial _{xx} u = f(t,x), \qquad (t,x) \in (0,\infty ) \times \mathbb{R }, \end{aligned}$$
(53)

subjected to the initial conditions

$$\begin{aligned} u(0,x) = g(x), \qquad u_t(0,x) = h(x). \end{aligned}$$

Suppose that

  • \(c(x)\) is positive bounded away from zero and smooth everywhere except at \(x=0\) where it has a discontinuity,

  • \(g(x)\) and \(h(x)\) are smooth, compactly supported functions and \(0 \notin \text{ supp} \, g \cup \text{ supp} \, h\),

  • \(\partial _t^k f \in L^2(\mathbb{R })\) for each fixed \(t\), and \(\partial _t^k f = 0\) at \(t=0\) for all \(k \ge 0\).

Then, for each fixed \(t\), for solutions \(u\) to any of the two wave equations (52) and (53),

$$\begin{aligned} \partial _t^k u_t \in L^2(\mathbb{R }), \qquad \partial _t^k u_x \in L^2(\mathbb{R }), \qquad \forall k \ge 0. \end{aligned}$$

Proof

Let \(v := \partial _t^k u\). Then, for the conservative form, \(v\) solves the Cauchy problem

$$\begin{aligned} v_{tt} - \partial _x \bigl (c(x) \, \partial _x v \bigr ) = \partial _t^k f, \qquad (t,x) \in (0,\infty ) \times \mathbb{R }, \end{aligned}$$
(54)

with the initial conditions

$$\begin{aligned} v(0,x) = \partial _t^k u(0,x) = \left\{ \begin{array}{ll} (\partial _x c \, \partial _x)^{k/2} g,&\quad k \, \text{ even},\\ (\partial _x c \, \partial _x)^{(k-1)/2} h,&\quad k \, \text{ odd}, \end{array} \right. \end{aligned}$$

and

$$\begin{aligned} v_t(0,x) = \partial _t^{k+1} u(0,x) = \left\{ \begin{array}{ll} (\partial _x c \, \partial _x)^{k/2} h,&\quad k \, \text{ even},\\ (\partial _x c \, \partial _x)^{(k+1)/2} g,&\quad k \, \text{ odd}. \end{array} \right. \end{aligned}$$

For the non-conservative form, \(v\) solves the Cauchy problem

$$\begin{aligned} v_{tt} - c(x) \, \partial _{xx} v = \partial _t^k f, \qquad (t,x) \in (0,\infty ) \times \mathbb{R }, \end{aligned}$$
(55)

with the initial conditions

$$\begin{aligned} v(0,x) = \partial _t^k u(0,x) = \left\{ \begin{array}{ll} (c \, \partial _{xx})^{k/2} g,&\quad k \, \text{ even},\\ (c \, \partial _{xx})^{(k-1)/2} h,&\quad k \, \text{ odd}, \end{array} \right. \end{aligned}$$

and

$$\begin{aligned} v_t(0,x) = \partial _t^{k+1} u(0,x) = \left\{ \begin{array}{ll} (c \, \partial _{xx})^{k/2} h,&\quad k \, \text{ even},\\ (c \, \partial _{xx})^{(k+1)/2} g,&\quad k \, \text{ odd}. \end{array} \right. \end{aligned}$$

Since the functions \(g\) and \(h\) are smooth and their support does not include the discontinuity point of \(c(x)\), the initial data for \(v\) in both problems are smooth for all \(k\). It is well known that for the wave equations (54) and (55) with smooth initial data and \(L^2\) forcing term [11],

$$\begin{aligned} v_t, \, v_x \in L^2(\mathbb{R }). \end{aligned}$$

This completes the proof. \(\square \)

Theorem 7

Consider the 1D Cauchy problem for the scalar wave equation in the conservative form

$$\begin{aligned} u_{tt} - \partial _x\bigl ( c(x,y) \, \partial _x u \bigr ) = f(x), \qquad (t,x,y) \in (0,\infty ) \times \mathbb{R } \times \mathbb{R }, \end{aligned}$$
(56)

subjected to the initial conditions

$$\begin{aligned} u(0,x,y) = g(x), \qquad u_t(0,x,y) = h(x). \end{aligned}$$
(57)

Let \(z_{k,l} := \partial _y^k \partial _t^l c u_x\), and assume that the assumptions of Lemma 10 hold. If \(\partial _y^k c \in L^{\infty }(\mathbb{R }), \forall k \ge 0\), then for each fixed \(t\) and \(y\),

$$\begin{aligned} \partial _t z_{k,l} \in L^2(\mathbb{R }), \qquad \partial _{xx} z_{k,l} \in L^2(\mathbb{R }), \qquad \forall k, l \ge 0. \end{aligned}$$
(58)

Proof

We show the result by induction on \(k\).

Case \(k=0\). We have \(\partial _t z_{0,l} = c \, \partial _t^{l+1} u_x\) which belongs to \(L^2(\mathbb{R })\) by Lemma A2 for all \(l \ge 0\). Moreover, differentiating (56) \(l\) times with respect to \(t\) and once with respect to \(x\) and multiplying by \(c\), we obtain

$$\begin{aligned} \partial _{tt} z_{0,l} = c \, \partial _{xx} z_{0,l}. \end{aligned}$$
(59)

Therefore, \(\partial _{xx} z_{0,l} \in L^2(\mathbb{R })\) for all \(l \ge 0\), because \(\partial _t z_{0,l+1} \in L^2(\mathbb{R })\).

General case. We assume that (58) holds with \(k < K\). Differentiating (59) \(K\) times with respect to \(y\) gives us

$$\begin{aligned} \partial _{tt} z_{K,l} - c \, \partial _{xx} z_{K,l} = \sum _{k=0}^{K-1} \genfrac(){0.0pt}{}{K}{k} \, \partial _y^{K-k} c \, \, \partial _{xx}z_{k,l}. \end{aligned}$$

Since the right hand side belongs to \(L^2(\mathbb{R })\) by the induction hypothesis, Lemma 10 tells us that \(\partial _t z_{K,l} \in L^2(\mathbb{R })\) for all \(l \ge 0\). Moreover,

$$\begin{aligned} \partial _{xx} z_{K,l} = \frac{1}{c} \, \Bigl ( \partial _t z_{K,l+1} - \sum _{k=0}^{K-1} \genfrac(){0.0pt}{}{K}{k} \, \partial _y^{K-k} c \, \, \partial _{xx} z_{k,l} \Bigr ), \end{aligned}$$

where the right hand side is in \(L^2(\mathbb{R })\). This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motamed, M., Nobile, F. & Tempone, R. A stochastic collocation method for the second order wave equation with a discontinuous random speed. Numer. Math. 123, 493–536 (2013). https://doi.org/10.1007/s00211-012-0493-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0493-5

Mathematics Subject Classification (2000)

Navigation