Skip to main content
Log in

Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we review and we extend the reduced basis approximation and a posteriori error estimation for steady Stokes flows in affinely parametrized geometries, focusing on the role played by the Brezzi’s and Babuška’s stability constants. The crucial ingredients of the methodology are a Galerkin projection onto a low-dimensional space of basis functions properly selected, an affine parametric dependence enabling to perform competitive Offline-Online splitting in the computational procedure and a rigorous a posteriori error estimation on field variables. The combinatiofn of these three factors yields substantial computational savings which are at the basis of an efficient model order reduction, ideally suited for real-time simulation and many-query contexts (e.g. optimization, control or parameter identification). In particular, in this work we focus on (i) the stability of the reduced basis approximation based on the Brezzi’s saddle point theory and the introduction of a supremizer operator on the pressure terms, (ii) a rigorous a posteriori error estimation procedure for velocity and pressure fields based on the Babuška’s inf-sup constant (including residuals calculations), (iii) the computation of a lower bound of the stability constant, and (iv) different options for the reduced basis spaces construction. We present some illustrative results for both interior and external steady Stokes flows in parametrized geometries representing two parametrized classical Poiseuille and Couette flows, a channel contraction and a simple flow control problem around a curved obstacle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Other certified and quite complex approaches have been studied in the nonlinear steady case (Navier–Stokes equations) based on the Brezzi-Rappaz-Raviart theory [4, 5]. These approaches have been proposed in [25, 48] and more recently in a natural norm framework [9], focusing on physical parameters (Reynolds, Prandtl, Grashof numbers). Further developments have combined physical and geometrical parameters [11, 46], dealing also with time-dependent Boussinesq equations [19, 46].

  2. The pedix \(p\) stands for pressure to underline on which term the supremizer operator is acting on [41, 47].

  3. In fact, (19), gives \(\Vert T^{{\varvec{\mu }}}_p q\Vert _{X}^2= (T^{{\varvec{\mu }}}_p q,T^{{\varvec{\mu }}}_p q)_X = \mathcal{B }(q,T^{{\varvec{\mu }}}q; {\varvec{\mu }})\); moreover, for any \(\mathbf{w }\in X^{\mathcal{N }}\)

    $$\begin{aligned} \frac{\mathcal{B }(q,\mathbf{w };{\varvec{\mu }})}{\Vert \mathbf{w }\Vert _X} = \frac{(T_p^{{\varvec{\mu }}}q,\mathbf{w })_{X}}{\Vert \mathbf{w }\Vert _X} \le \frac{\Vert T_p^{{\varvec{\mu }}}q\Vert _X\Vert \mathbf{w }\Vert _X}{\Vert \mathbf{w }\Vert _X} \le \Vert T_p^{{\varvec{\mu }}}q\Vert _X \end{aligned}$$

    by Cauchy-Schwarz inequality, so that the following relationship holds:

    $$\begin{aligned} \beta ^{\mathcal{N }}({\varvec{\mu }}) = \inf _{q \in Q^{\mathcal{N }}}\left( \frac{1}{\Vert q\Vert _{Q}} \left( \sup _{\mathbf{w }\in X^{\mathcal{N }}}\frac{\displaystyle \mathcal{B }(q,\mathbf{w }; {\varvec{\mu }})}{\Vert \mathbf{w }\Vert _{X}}\right) \right) \stackrel{\mathbf{w }=T_p^{{\varvec{\mu }}} q}{=} \inf _{q \in Q^{\mathcal{N }}}\frac{\Vert T_p^{{\varvec{\mu }}}q\Vert _X}{\Vert q\Vert _{Q}}, \end{aligned}$$

    or, equivalently, (20).

  4. A different “splitted supremizer” option might be introduced as well (see e.g. [41, 47]): this approach has the big advantage to preserve the approximation stability, to let us apply orthonormalization (method (ii)) and to preserve stability also after orthonormalization. Nevertheless, the cost for assembling and inverting the global RB matrix would still depend on the parametric complexity \(Q^a, Q^b\) of the problem, which can be rather high, above all in nonaffinely parametrized problems, where the empirical interpolation method has to be used in order to recover the affine parametric dependence.

  5. Preliminary versions of the greedy algorithm for the Stokes problem were introduced in [39] using an error projection for velocity and pressure [13], respectively, instead of an error bound. More recent versions based on error bounds were described e.g. in [9, 11].

  6. Throughout this section we use a notation which is as simple as possible and independent of the other sections for the sake of simplicity. We indicate as \(V*\) the space of continuous and linar functionals on \(V,\,\langle \cdot ,\cdot \rangle \) the usual duality pairing between \(V\) and \(V^*\) and consider \(f \in V^*\).

  7. Following [8], it is also possible to show that \(\beta _{BR} \ge \beta _{BA}\) and \(\alpha \ge \beta _{BA}\).

References

  1. Babuška, I.: Error-bounds for finite element method. Numer. Math. 16, 322–333 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brezzi, F.: On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers. R.A.I.R.O Anal. Numér. 2, 129–151 (1974)

    MathSciNet  Google Scholar 

  3. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15. Springer Verlag (1991)

  4. Brezzi, F., Rappaz, J., Raviart, P.: Finite dimensional approximation of nonlinear problems. Part I: branches of nonsingular solutions. Numer. Math. 36, 1–25 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caloz, G., Rappaz, J.: Numerical analysis for nonlinear and bifurcation problems. In: Ciarlet, P., Lions, J. (eds.) Handbook of Numerical Analysis, vol. V, Techniques of Scientific Computing (Part 2), pp. 487–637. Elsevier Science B.V. (1997)

  6. Dedè, L.: Optimal flow control for Navier–Stokes equations: drag minimization. Int. J. Numer. Meth. Fluids 55(4), 347–366 (2007)

    Article  MATH  Google Scholar 

  7. Dedè, L.: Adaptive and reduced basis methods for optimal control problems in environmental applications. Ph.D. thesis, Politecnico di Milano (2008)

  8. Demkowicz, L.: Babuška = Brezzi? Technical Report 08–06. University of Texas, Austin, ICE (2006)

  9. Deparis, S.: Reduced basis error bound computation of parameter-dependent Navier–Stokes equations by the natural norm approach. SIAM J. Numer. Anal. 46(4), 2039–2067 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deparis, S., Løvgren, A.: Stabilized reduced basis approximation of incompressible three-dimensional Navier–Stokes equations in parametrized deformed domains. J. Sci. Comput. 50, 198–212 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deparis, S., Rozza, G.: Reduced basis method for multi-parameter-dependent steady Navier–Stokes equations: applications to natural convection in a cavity. J. Comput. Phys. 228(12), 4359–4378 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gerner, A.L., Veroy, K.: Reduced basis a posteriori error bounds for the stokes equations in parametrized domains: a penalty approach. Math. Models Meth. Appl. Sci. 21(10), 2103–2134 (2010)

    Article  MathSciNet  Google Scholar 

  13. Gresho, P., Sani, R.: Incompressible Flow and the Finite Element Method: Advection-Diffusion and Isothermal Laminar Flow. Wiley, New York (1998)

    MATH  Google Scholar 

  14. Gunzburger, M.D.: Finite Element Methods for Viscous Incompressible Flows. Academic Press, Boston (1989)

  15. Haasdonk, B., Salomon, J., Wohlmuth, B.: A reduced basis method for parametrized variational inequalities. Technical Report 2011–16, SimTech, preprint (2011)

  16. Huynh, D., Knezevic, D., Chen, Y., Hesthaven, J., Patera, A.: A natural-norm successive constraint method for inf-sup lower bounds. Comput. Methods Appl. Mech. Eng. 199(29–32), 1963–1975 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huynh, D., Rozza, G., Sen, S., Patera, A.: A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability costants. C. R. Acad. Sci. Paris. Ser. I Math. 345, 473–478 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ito, K., Ravindran, S.: A reduced-order method for simulation and control of fluid flow. J. Comput. Phys. 143(2), 403–425 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Knezevic, D., Nguyen, N., Patera, A.: Reduced basis approximation and a posteriori error estimation for the parametrized unsteady Boussinesq equations. Math. Models Meth. Appl. Sci. 21(7), 1415–1442 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lassila, T., Rozza, G.: Parametric free-form shape design with PDE models and reduced basis method. Comput. Methods Appl. Mech. Eng. 199, 1583–1592 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Løvgren, A., Maday, Y., Rønquist, E.: A reduced basis element method for the steady Stokes problem. ESAIM Math. Model. Numer. Anal. 40(3), 529–552 (2006)

    Article  Google Scholar 

  22. Manzoni, A., Quarteroni, A., Rozza, G.: Shape optimization of cardiovascular geometries by reduced basis methods and free-form deformation techniques. Int. J. Numer. Meth. Fluids 70(5), 646–670 (2012)

    Article  MathSciNet  Google Scholar 

  23. Manzoni, A., Rozza, G.: A posteriori error estimation for quadratic outputs in parametrized stokes problems (2012, in preparation)

  24. Milani, R., Quarteroni, A., Rozza, G.: Reduced basis method for linear elasticity problems with many parameters. Comput. Methods Appl. Mech. Eng. 197, 4812–4829 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nguyen, N., Veroy, K., Patera, A.: Certified real-time solution of parametrized partial differential equations. In: Yip, S. (ed.) Handbook of Materials Modeling, pp. 1523–1558. Springer, Berlin (2005)

    Google Scholar 

  26. Noor, A.: On making large nonlinear problems small. Comput. Methods Appl. Mech. Eng. 34, 955–985 (1982)

    Article  MATH  Google Scholar 

  27. Noor, A., Peters, J.: Reduced basis technique for nonlinear analysis of structures. AIAA J. 18(4), 455–462 (1980)

    Article  Google Scholar 

  28. Panton, R.L.: Incompressible Flow, 3rd edn. Wiley, New York (2005)

    Google Scholar 

  29. Patera, A., Rozza, G.: Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations. Version 1.0, 2006, Copyright MIT, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering. Available at http://augustine.mit.edu

  30. Peterson, J.: The reduced basis method for incompressible viscous flow calculations. SIAM J. Sci. Stat. Comput. 10(4), 777–786 (1989)

    Article  MATH  Google Scholar 

  31. Pierce, N., Giles, M.: Adjoint recovery of superconvergent functionals from pde approximations. SIAM Rev. 42(2), 247–264 (2000)

    Article  MathSciNet  Google Scholar 

  32. Quarteroni, A.: Numerical Models for Differential Problems. Springer, Series MS &A, vol. 2 (2009)

  33. Quarteroni, A., Rozza, G.: Numerical solution of parametrized Navier–Stokes equations by reduced basis methods. Numer. Methods Partial Differ. Equ. 23(4), 923–948 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994)

    MATH  Google Scholar 

  35. rbMIT Library. http://augustine.mit.edu/methodology/methodology_rbMIT_System.htm. MIT, Cambridge (2007–2010). © Massachusetts Institute of Technology

  36. Rovas, D.: Reduced-basis output bound methods for parametrized partial differential equations. Ph.D. thesis, Massachusetts Institute of Technology (2003)

  37. Rozza, G.: On optimization, control and shape design of an arterial bypass. Int. J. Numer. Meth. Fluids 47(10–11), 1411–1419 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rozza, G.: Real-time reduced basis techniques for arterial bypass geometries. In: Bathe, K. (ed.) Computational Fluid and Solid Mechanics, pp. 1283–1287. Elsevier (2005). Proceedings of the Third M.I.T. Conference on Computational Fluid and Solid Mechanics, June 14–17 (2005)

  39. Rozza, G.: Shape design by optimal flow control and reduced basis techniques: applications to bypass configurations in haemodynamics. Ph.D. thesis, N. 3400, École Polytechnique Fédérale de Lausanne (2005)

  40. Rozza, G.: Real-time reduced basis solutions for Navier-Stokes equations: optimization of parametrized bypass configurations. In: Wesseling, P., Onate, E., Periaux, J. (eds.) Proceedings of the ECCOMAS CFD 2006, IV European Conference on Computational Fluid Dynamics, Egmond aan Zee, The Netherlands, (2006)

  41. Rozza, G.: Reduced basis methods for Stokes equations in domains with non-affine parameter dependence. Comput. Vis. Sci. 12(1), 23–35 (2009)

    Article  MathSciNet  Google Scholar 

  42. Rozza, G.: Reduced basis approximation and error bounds for potential flows in parametrized geometries. Commun. Comput. Phys. 9, 1–48 (2011)

    MathSciNet  Google Scholar 

  43. Rozza, G., Huynh, D., Patera, A.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15, 229–275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rozza, G., Lassila, T., Manzoni, A.: Reduced basis approximation for shape optimization in thermal flows with a parametrized polynomial geometric map. In: Hesthaven, J.S. Rønquist, E.M. (eds.) Spectral and High Order Methods for Partial Differential Equations. Selected papers from the ICOSAHOM ’09 Conference, June 22–26, Trondheim, Norway. Springer, Series: Lecture Notes in Computational Science and Engineering, vol. 76 (2011)

  45. Rozza, G., Manzoni, A.: Model order reduction by geometrical parametrization for shape optimization in computational fluid dynamics. In: Pereira, J.C.F., Sequeira, A. (eds.) Proceedings of ECCOMAS CFD 2010, V European Conference on Computational Fluid Dynamics, Lisbon, Portugal (2010)

  46. Rozza, G., Nguyen, C., Patera, A., Deparis, S.: Reduced basis methods and a posteriori error estimators for heat transfer problems. In: Proceedings of HT2009, 2009 ASME Summer Heat Transfer Conference, paper HT 2009–88211 (2009)

  47. Rozza, G., Veroy, K.: On the stability of the reduced basis method for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Eng. 196(7), 1244–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Veroy, K., Patera, A.: Certified real-time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Meth. Fluids 47, 773–788 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Veroy, K., Prud’homme, C., Rovas, D.V., Patera, A.T.: A Posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In: Proceedings of the 16th AIAA Computational Fluid Dynamics Conference (2003). Paper 2003–3847

  50. Xu, J., Zikatanov, L.: Some observation on Babuška and Brezzi theories. Numer. Math. 94(1), 195–202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We acknowledge Prof. A. Quarteroni for his support and insights, Prof. A. T. Patera (MIT) for contributions and encouragement, as well as all the people who have contributed to the rbMIT package (beta version) used for RB computations presented in this work. In particular, we thank Dr. N. C. Nguyen (MIT) and Dr. T. Lassila (Aalto University) for their feedbacks and suggestions. This work has been supported in part by the Swiss National Science Foundation (Project 200021-122136), by the ERC-Mathcard Project (Project ERC-2008-AdG 227058) and by the Progetto Roberto Rocca (MIT-Politecnico di Milano) and the AFOSR (Grant No. FA9550-07-1-0425 and OSD/AFOSR Grant No. FA9550- 09-1-0613).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Rozza.

Additional information

Andrea Manzoni and Gianluigi Rozza now at SISSA, MathLab, International school for Advanced Studies, Trieste, Italy.

Appendices

Appendix A: On the relationship between Brezzi and Babuška theories

In this short section we report some observations on the two inf-sup stability theories formulated by Babuška [1] and Brezzi [2], briefly discussing the relationship between the two theories and underlining the motivations on which we have based and developed the previous analysis. Some recent contributions, on which this section is based, can be found in the works by Xu and Zikatanov [50] and Demkowicz [8]. Considering a continuous bilinear form \(\varPhi (\cdot ,\cdot ): U \times V \rightarrow \mathbb R \), the Babuška theory states that the problemFootnote 6

$$\begin{aligned} \text{ find} \quad y \in U: \quad \varPhi (y,z) = \langle f,z \rangle \quad \forall \ z \in V \end{aligned}$$

is well posed if and only inf the following (Babuška) inf-sup condition holds:

$$\begin{aligned} \inf _{y \in U} \sup _{z \in V} \frac{\varPhi (y,z)}{\Vert y\Vert _U \Vert z\Vert _V} = \inf _{z \in V} \sup _{y \in U} \frac{\varPhi (y,z)}{\Vert y\Vert _U \Vert z\Vert _V} = \beta _{BA} > 0, \end{aligned}$$
(56)

and the unique solution of (36) satisfies

$$\begin{aligned} \Vert y\Vert _U \le \frac{\Vert f\Vert _{V^*}}{\beta _{BA}}. \end{aligned}$$
(57)

In this way, the Babuška theory can be seen as a generalization to the Petrov-Galerkin case of the Lax-Milgram result for the Galerkin-type formulation; its application to the Stokes problem is just a possible use. Our interest is to create a general framework to compute error bounds for noncoercive problems solved by reduced basis. On the other hand, the Brezzi theory applies to mixed variational problems under the form

$$\begin{aligned} \left\{ \begin{array}{ll} a(u,v) + b(p,v) = \langle f,v\rangle &{} \quad \forall \ v \in V,\\ b(q,u)= \langle g,q\rangle &{} \quad \forall \ q \in Q, \end{array} \right. \end{aligned}$$
(58)

where \(a(\cdot ,\cdot ):V \times V \rightarrow \mathbb R \) and \(b(\cdot ,\cdot ): Q \times V \rightarrow \mathbb R \) are continuous bilinear forms, i.e.

$$\begin{aligned} a(u,v) \le \gamma _a \Vert u\Vert _V \Vert v\Vert _V \ \ \forall \ u,v \in V, \quad b(q,v) \le \gamma _b \Vert q\Vert _Q \Vert v\Vert _V \ \ \forall \ q \in Q, \forall \ v \in V, \end{aligned}$$

and \(f \in V^*,\,g \in Q^*\). Such a variational problem is well posed if and only if the following (Brezzi) inf-sup conditions hold:

$$\begin{aligned} \inf _{u \in V_0} \sup _{v \in V_0} \frac{a(u,v)}{\Vert u\Vert _V \Vert v\Vert _V} = \inf _{v \in V_0} \sup _{u \in V_0} \frac{a(u,v)}{\Vert u\Vert _V \Vert v\Vert _V} = \alpha > 0, \end{aligned}$$
(59)

where \(V_0 = \{v \in {\varvec{V}}: b(q,v)= 0, \ \forall q \in Q\}\), and

$$\begin{aligned} \inf _{q \in Q} \sup _{v \in V} \frac{b(q,v)}{\Vert q\Vert _Q \Vert v\Vert _V} = \beta _{BR} > 0. \end{aligned}$$
(60)

Furthermore, under conditions (59)–(60) the unique solution \((u,p) \in V \times Q\) satisfies

$$\begin{aligned} \Vert (u,p)\Vert _{V \times Q} \le \mathcal{K }_{BR}(\alpha ^{-1}, \beta _{BR}^{-1}, \gamma _a) \Vert (f,g)\Vert _{V^* \times Q^*}. \end{aligned}$$
(61)

Moreover, it is also possible to derive the following estimates for the two variables distinctly:

$$\begin{aligned} \begin{array}{lll} \displaystyle \Vert u\Vert _X &{}\le &{} \dfrac{1}{\alpha } \left[ \Vert f\Vert _{X^*} + \dfrac{\alpha + \gamma _a}{\beta _{BR}} \Vert g\Vert _{Q^*}\right] ,\\ \displaystyle \Vert p\Vert _Q &{}\le &{} \dfrac{1}{\beta _{BR}} \left[ \left( 1 + \dfrac{\gamma _a}{\alpha } \right) \Vert f\Vert _{X^*} + \dfrac{ \gamma _a (\alpha + \gamma _a)}{\alpha + \beta _{BR}} \Vert g\Vert _{Q^*}\right] . \end{array} \end{aligned}$$
(62)

The relationship between the Brezzi theory and the Babuška theory in the case of a Stokes problem is based on the identifications (36)–(37): in this way, we can recast the mixed variational problem (58) into the Babuška framework; the error estimation (42) derived in Sect. 6 is the Babuška estimate (57) for (41). In the same way, using the estimations (62) on (40) it is possible to derive analogous error estimates for the velocity and the pressure errors, separately. The development of separated error bounds is ongoing. Moreover, it is possible to show that the main constants derived from these two theories are relatedFootnote 7 by [50]

$$\begin{aligned} \beta _{BA} \ge \frac{1}{\mathcal{K }_{BR}(\alpha ^{-1}, \beta _{BR}^{-1}, \gamma _a) } \end{aligned}$$
(63)

Thus, considering aggregate error estimates for both RB velocity and pressure of type (57) or (61), we have that the Babuška-based estimate is sharper than the Brezzi-based one since the “safety factor” \(\beta _{BA}\) is in any case greater than \(1/\mathcal{K }_{BR}\). Moreover, the advantage of the Babuška-based error estimator is that only a (lower bound of a) stability constant needs to be evaluated to get the error bound. Instead, the Brezzi-based error estimator would require the evaluation of the coercivity/continuity constants of \(a(\cdot ,\cdot )\) and the Brezzi inf-sup constant of \(b(\cdot ,\cdot )\). We remark that all the approximation stability for the Stokes RB problem is based on Brezzi theory.

Appendix B: Offline-Online procedure for error bounds construction

In order to be computed in a very rapid and efficient way, the error estimation (42) has to be based on the Offline/Online procedure already used for the RB approximation. To reach this goal, it is important to introduce the Riesz representation of \(r_{\mathbf{u }}(\cdot \, ;{\varvec{\mu }})\) and \(r_{p}(\cdot \, ;{\varvec{\mu }})\): \(\hat{\mathbf{e}}_{\mathbf{u }}({\varvec{\mu }}) \in X^{\mathcal{N }}\) and \(\hat{e}_{p}({\varvec{\mu }}) \in Q^{\mathcal{N }}\) satisfy

$$\begin{aligned} (\hat{\mathbf{e}}_{\mathbf{u }}({\varvec{\mu }}),\mathbf{w })_X \!=\! r_{\mathbf{u }}(\mathbf{w };{\varvec{\mu }}), \ \ \forall \mathbf{w }\!\in \! X^{\mathcal{N }}, \quad (\hat{e}_{p}({\varvec{\mu }}),q)_Q \!=\! r_{p}(q;{\varvec{\mu }}), \ \ \forall q \in Q^{\mathcal{N }}.\qquad \end{aligned}$$
(64)

This allows us to write (40) as

$$\begin{aligned} \begin{array}{rll} \mathcal{A }(\mathbf{e}_\mathbf{u} ({\varvec{\mu }}), \mathbf{w }; {\varvec{\mu }}) + \mathcal{B }(e_p({\varvec{\mu }}), \mathbf{w }; {\varvec{\mu }}) = &{}(\hat{\mathbf{e}}_{\mathbf{u }}({\varvec{\mu }}),\mathbf{w })_X &{} \quad \forall \ \mathbf{w }\in X^\mathcal{N },\\ \mathcal{B }(q,\mathbf{e}_\mathbf{u} ({\varvec{\mu }}); {\varvec{\mu }}) = &{}(\hat{e}_{p}({\varvec{\mu }}),q)_Q &{} \quad \forall \ q \in Q^\mathcal{N } \end{array} \end{aligned}$$

and it follows that the dual norm of the residual can be evaluated through the Riesz representation:

$$\begin{aligned} \Vert r_{\mathbf{u }}(\cdot \, ; {\varvec{\mu }})\Vert _{X^{\prime }} = \sup _{\mathbf{w }\in X^\mathcal{N } } \displaystyle \frac{ r_{\mathbf{u }}(\mathbf{w }; {\varvec{\mu }})}{\Vert \mathbf{w }\Vert _X} = \Vert \hat{\mathbf{e}}_{\mathbf{u }}({\varvec{\mu }})\Vert _X,\end{aligned}$$
(65)
$$\begin{aligned} \Vert r_p(\cdot \, ; {\varvec{\mu }})\Vert _{Q^{\prime }} = \sup _{q \in Q^\mathcal{N } } \displaystyle \frac{ r_p(q; {\varvec{\mu }})}{\Vert q\Vert _Q} = \Vert \hat{ e}_{p}({\varvec{\mu }})\Vert _Q. \end{aligned}$$
(66)

Hence, the error bounds developed in the previous section are only useful if they allow for an efficient Offline/Online computational procedure that leads to an Online complexity independent of \(\mathcal{N }\). The Offline/Online decomposition presented in the following is mainly based on the dual norm of the residual. First of all, from the affine decomposition of bilinear forms (12) we can write, equivalently,

$$\begin{aligned} \tilde{\mathcal{A }}(\mathbf{V },\mathbf W ;{\varvec{\mu }}) = \sum _{q=1}^{Q_a + 2Q_b} \tilde{\varTheta }_q({\varvec{\mu }}) \tilde{\mathcal{A }}^q(\mathbf{V },\mathbf W ), \end{aligned}$$
(67)

where

$$\begin{aligned}&\tilde{\varTheta }^q({\varvec{\mu }}) = \varTheta ^q_a, \quad q=1,\ldots ,Q_a,\\&\tilde{\varTheta }^{q+Q_a}({\varvec{\mu }}) = \tilde{\varTheta }^{q+Q_a + Q_b}({\varvec{\mu }}) = \varTheta ^q_b({\varvec{\mu }}), \quad q=1,\ldots ,Q_b, \end{aligned}$$

and

$$\begin{aligned} \begin{array}{l@{\quad }l} \tilde{\mathcal{A }}^q(\mathbf{V },\mathbf W ) = \mathcal{A }^q(\mathbf{v },\mathbf{w }) \quad &{} q=1,\ldots , Q_a, \\ \tilde{\mathcal{A }}^q(\mathbf{V },\mathbf W ) = \mathcal{B }^q(p,\mathbf{w }) \quad &{} q=Q_a+1,\ldots ,Q_a + Q_b, \\ \tilde{\mathcal{A }}^q(\mathbf{V },\mathbf W ) = \mathcal{B }^q(q,\mathbf{v }) \quad &{} q=Q_a+Q_b+1,\ldots ,Q_a + 2Q_b. \end{array} \end{aligned}$$

In this way, denoting as \(\mathbf{U }_N({\varvec{\mu }}) = (\mathbf{u }_N({\varvec{\mu }}),p_N({\varvec{\mu }})) \in \mathbb R ^{3N}\) the global vector of the RB components and recalling the expansion already used in (34), the residual can be expressed, considering the ‘global supremizer” option of Sect. 4.2, as

$$\begin{aligned} \tilde{r}(\mathbf W ;{\varvec{\mu }})&= \tilde{F}(\mathbf W ) - \tilde{\mathcal{A }}(\mathbf{U }_N^{\mathcal{N }} ({\varvec{\mu }}),\mathbf W ;{\varvec{\mu }}) \\&=\tilde{F}(\mathbf W ) - \sum _{n=1}^{3N} U_{N \, n}({\varvec{\mu }}) \sum _{q=1}^{\tilde{Q}} \tilde{\varTheta }^q ({\varvec{\mu }}) \tilde{A}^q(\varvec{\varPhi }_n,\mathbf W ), \end{aligned}$$

where \(\tilde{Q} = Q_a + 2 Q_b\) and \(\varvec{\varPhi }_n = (\varvec{\sigma }_n, 0)\) for \(n=1,\ldots ,2N,\,\varvec{\varPhi }_n = (\mathbf{0}, \xi _n)\) for \(n=2N+1,\ldots ,3N\). Together with (64) and linear superposition, this gives us

$$\begin{aligned} (\hat{\mathbf{e}}({\varvec{\mu }}), \mathbf W )_Y&= (\hat{\mathbf{e}}_{\mathbf{u }}({\varvec{\mu }}),\mathbf{w })_X + (\hat{e}_p({\varvec{\mu }}),q)_Q \nonumber \\&=\tilde{F}(\mathbf W ) - \sum _{n=1}^{3N} U_{N \, n}({\varvec{\mu }}) \sum _{q=1}^{\tilde{Q}} \tilde{\varTheta }^q ({\varvec{\mu }}) \tilde{A}^q(\varvec{\varPhi }_n,\mathbf W ) \end{aligned}$$

where \(\hat{\mathbf{e}}({\varvec{\mu }}) = (\hat{\mathbf{e}}_{\mathbf{u }}({\varvec{\mu }}), \hat{e}_p({\varvec{\mu }})) \in Y^{\mathcal{N }}\). We thus may write \(\hat{\mathbf{e}}({\varvec{\mu }}) \in Y^{\mathcal{N }}\) as

$$\begin{aligned} \hat{\mathbf{e}}({\varvec{\mu }}) = \tilde{\mathcal{F }} + \sum _{q=1}^{\tilde{Q}}\sum _{n=1}^{3N} \tilde{\varTheta }^q({\varvec{\mu }}) U_{N\, n}({\varvec{\mu }}) \tilde{\mathcal{A }}_n^q, \end{aligned}$$

where \(\tilde{\mathcal{F }} \in Y^{\mathcal{N }}\) and \(\tilde{\mathcal{A }}_n^q \in Y^{\mathcal{N }}\) (called FE “pseudo”-solutions) satisfy

$$\begin{aligned} (\tilde{\mathcal{F }},\mathbf W )_Y&= \tilde{F}(\mathbf W ), \quad \forall \ \mathbf W \in Y^{\mathcal{N }},\end{aligned}$$
(68)
$$\begin{aligned} (\tilde{\mathcal{A }}_n^q,\mathbf W )_Y&= -\tilde{A}^q(\varvec{\varPhi }_n,\mathbf W ), \quad \forall \ \mathbf W \in Y^{\mathcal{N }}, \,\, 1 \le n \le 3N, \,\, 1 \le q \le \tilde{Q}. \end{aligned}$$
(69)

We note that (69) and (68) are simple parameter-independent problems and thus can be solved once in the Offline stage. It then follows that:

$$\begin{aligned} \Vert \hat{\mathbf{e}}({\varvec{\mu }})\Vert _Y^2&= \left( \tilde{\mathcal{F }} + \sum _{q=1}^{\tilde{Q}}\sum _{n=1}^{3N} \tilde{\varTheta }^q({\varvec{\mu }}) U_{Nn}({\varvec{\mu }}) \tilde{\mathcal{A }}_n^q , \, \tilde{\mathcal{F }} + \sum _{q^{\prime }=1}^{\tilde{Q}}\sum _{n^{\prime }=1}^{3N} \tilde{\varTheta }^{q^{\prime }}({\varvec{\mu }}) U_{Nn^{\prime }}({\varvec{\mu }}) \tilde{\mathcal{A }}_{n^{\prime }}^{q^{\prime }}\right) _Y \nonumber \\&= (\mathcal{F },\mathcal{F })_Y + \sum _{q=1}^{\tilde{Q}}\sum _{n=1}^{3N} \tilde{\varTheta }^q({\varvec{\mu }}) U_{Nn}({\varvec{\mu }}) \nonumber \\&\times \left\{ 2(\tilde{\mathcal{F }},\tilde{\mathcal{A }}_n^q)_Y + \sum _{q^{\prime }=1}^{Q_a}\sum _{n^{\prime }=1}^N \tilde{\varTheta }^{q^{\prime }}({\varvec{\mu }}) U_{Nn^{\prime }}({\varvec{\mu }}) (\tilde{\mathcal{A }}_n^q, \tilde{\mathcal{A }}_{n^{\prime }}^{q^{\prime }})_Y \right\} \end{aligned}$$
(70)

This expression can be related to the requested dual norm of the residual through (65)–(66). It is the sum of products of parameter-dependent known functions and parameter independent inner products, formed of more complicated but precomputable quantities. The Offline/Online decomposition is thus clear:

  1. (i)

    in the Offline stage we first solve (69), (68) for the parameter-independent FE “pseudo”-solutions \(\tilde{\mathcal{F }}\) and \(\tilde{\mathcal{A }}_n^q, \, 1 \le n \le 3N, \, 1 \le q \le \tilde{Q}\) and form/store the parameter-independent inner products \((\tilde{\mathcal{F }},\tilde{\mathcal{F }})_Y,\,(\tilde{\mathcal{F }},\tilde{\mathcal{A }}_n^q)_Y\) and \((\tilde{\mathcal{A }}_n^q, \tilde{\mathcal{A }}_{n^{\prime }}^{q^{\prime }})_Y, \, 1 \le n,n^{\prime } \le 3N, \, 1 \le q,q^{\prime } \le \tilde{Q}\). The Offline operation count depends on \(N,\,\tilde{Q}\) and \(\mathcal{N }\);

  2. (ii)

    in the Online stage—performed for each new value of \({\varvec{\mu }}\)—we simply evaluate the sum (70) in terms of the \(\tilde{\varTheta }^q({\varvec{\mu }}), \, 1 \le q \le \tilde{Q}\) and \(U_{N\,n}({\varvec{\mu }}), \, 1 \le n \le 3N\) (already computed for the output evaluation) and the precomputed and stored (parameter-independent) \((\cdot , \cdot )_Y\) inner products. The Online operation count, and hence the marginal and asymptotic average cost, is only \(\mathcal{O }(\tilde{Q}^2 9N^2)\), and thus the crucial point—the independence of \(\mathcal{N }\)—is achieved again.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozza, G., Huynh, D.B.P. & Manzoni, A. Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants. Numer. Math. 125, 115–152 (2013). https://doi.org/10.1007/s00211-013-0534-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0534-8

Mathematics Subject Classification

Navigation