Skip to main content
Log in

Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A family of any order finite volume (FV) schemes over quadrilateral meshes is analyzed under the framework of Petrov–Galerkin method. By constructing a special mapping from the trial space to the test space, a unified proof for the inf–sup condition of any order FV schemes is provided under a weak condition that the underlying mesh is an \(h^{1+\gamma },\gamma >0\) parallelogram mesh. The optimal convergence rate of FV solutions is then obtained with well-known techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bank, R.E., Rose, D.J.: Some error estimates for the box scheme. SIAM J. Numer. Anal. 24, 777–787 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barth, T., Ohlberger, M.: Finite Volume Methods: Foundation and Analysis. In: Encyclopedia of Computational Mechanics, vol. 1, chapter 15. Wiley, New York (2004)

  3. Cai, Z.: On the finite volume element method. Numer. Math. 58, 713–735 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cai, Z., Douglas, J., Park, M.: Development and analysis of higher order finite volume methods over rectangles for elliptic equations. Adv. Comput. Math. 19, 3–33 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, L.: A new class of high order finite volume methods for second order elliptic equations. SIAM J. Numer. Anal. 47, 4021–4043 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, Z., Wu, J., Xu,Y.: Higher-order finite volume methods for elliptic boundary value problems. Adv. Comput. Math. 37, 191–253 (2012)

  7. Chou, S.-H., Kwak, D.Y., Li, Q.: \(L^p\) error estimates and superconvergence for covolume or finite volume element methods. Numer. Methods Partial Differ. Equ. 19, 463–486 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978)

    MATH  Google Scholar 

  9. Cui, M., Ye, X.: Unified analysis of finite volume methods for the Stokes equations. SIAM J. Numer. Anal. 48, 824–839 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, Boston (1984)

    MATH  Google Scholar 

  11. Douglas, J., Dupont, T.: Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces. Numer. Math. 22, 99–109 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  12. Emonot, P.: Methods de volums elements finis: applications aux equations de Navier–Stokes et resultats de convergence, Lyon (1992)

  13. Ewing, R., Lin, T., Lin, Y.: On the accuracy of the finite volume element based on piecewise linear polynomials. SIAM J. Numer. Anal. 39, 1865–1888 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Eymard, R., Gallouet, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. VII, pp. 713–1020. North-Holland, Amsterdam (2000)

  15. Hackbusch, W.: On first and second order box methods. Computing 41, 277–296 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hyman, J.M., Knapp, R., Scovel, J.C.: High order finite volume approximations of differential operators on nonuniform grids. Phys. D 60, 112–138 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lazarov, R., Michev, I., Vassilevski, P.: Finite volume methods for convection–diffusion problems. SIAM J. Numer. Anal. 33, 31–55 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  19. Li, R., Chen, Z., Wu, W.: The Generalized Difference Methods for Partial differential Equations. Marcel Dikker, New Youk (2000)

    Google Scholar 

  20. Liebau, F.: The finite volume element method with quadratic basis function. Computing 57, 281–299 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nicolaides, R.A., Porsching, T.A., Hall, C.A.: Covolume methods in computational fluid dynamics. In: Hafez, M., Oshima, K. (eds.) Computational Fluid Dynamics Review, pp. 279–299. Wiley, New York (1995)

    Google Scholar 

  22. Ollivier-Gooch, C., Altena, M.: A high-order-accurate unconstructed mesh finite-volume scheme for the advection–diffusion equation. J. Comput. Phys. 181, 729–752 (2002)

    Article  MATH  Google Scholar 

  23. Patanker, S.V.: Numerical Heat Transfer and Fluid Flow. Ser. Comput. Methods Mech. Thermal Sci. McGraw Hill, New York (1980)

  24. Plexousakis, M., Zouraris, G.: On the construction and analysis of high order locally conservative finite volume type methods for one dimensional elliptic problems. SIAM J. Numer. Anal. 42, 1226–1260 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Schmidt, T.: Box schemes on quadrilateral meshes. Computing 51, 271–292 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Shi, Z.: A convergence condition for the quadrilateral Wilson element. Numer. Math. 44, 349–361 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  27. Shu, C.-W.: High order finite difference and finite volume weno schemes and discontinous galerkin methods for cfd. J. Comput. Fluid Dyn. 17, 107–118 (2003)

    Article  MATH  Google Scholar 

  28. Xu, J., Zou, Q.: Analysis of linear and quadratic simplitical finite volume methods for elliptic equations. Numer. Math. 111, 469–492 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zhang, Z.: Polynomial preserving gradient recovery and a posteriori estimate for bilinear element on irregular quadrilaterals. Int. J. Numer. Anal. Model. 1(1), 1–24 (2004)

    MathSciNet  Google Scholar 

  30. Zhang, Z.: Analysis of some quadrilateral nonconforming elements for incompressible elasticity. SIAM J. Numer. Anal. 34, 640–663 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsong Zou.

Additional information

Z. Zhang is supported in part by the US National Science Foundation through Grant DMS-111530, the Ministry of Education of China through the Changjiang Scholars program, and Guangdong Provincial Government of China through the “Computational Science Innovative Research Team” program. Q. Zou is supported in part by the National Natural Science Foundation of China under the Grant 11171359 and in part by the Fundamental Research Funds for the Central Universities of China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zou, Q. Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems. Numer. Math. 130, 363–393 (2015). https://doi.org/10.1007/s00211-014-0664-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0664-7

Mathematics Subject Classification

Navigation