Skip to main content
Log in

Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The paper is concerned with the unconditional stability and convergence of characteristics type methods for the time-dependent Navier–Stokes equations. We present optimal error estimates in \(L^2\) and \(H^1\) norms for a typical modified characteristics finite element method unconditionally, while all previous works require certain time-step restrictions. The analysis is based on an iterated characteristic time-discrete system, with which the error function is split into a temporal error and a spatial error. With a rigorous analysis to the characteristic time-discrete system, we prove that the difference between the numerical solution and the solution of the time-discrete system is \(\tau \)-independent, where \(\tau \) denotes the time stepsize. Thus numerical solution in \(W^{1,\infty }\) is bounded and optimal error estimates can be obtained in a traditional way. Numerical results confirm our analysis and show clearly the unconditional stability and convergence of the modified characteristics finite element method for the time-dependent Navier–Stokes equations. The approach used in this paper can be easily extended to many other characteristics-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achdou, Y., Guermond, J.L.: Convergence analysis of a finite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations. SIAM J. Numer. Anal. 37, 799–826 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams, R.A.: Sobolev Space, Pure and Applied Mathematics 65. Academic press, New York (1975)

    Google Scholar 

  3. Allievi, A., Bermejo, R.: Finite element modified method of characteristics for the Navier–Stokes equations. Int. J. Numer. Meth. Fluids 32, 439–464 (2000)

    Article  MATH  Google Scholar 

  4. Bermejo, R., Galán del Sastre, P., Saavedra, L.: A second order in time modified Lagrange-Galerkin finite element method for the incompressible Navier-Stokes equations. SIAM J. Numer. Anal. 50, 3084–3109 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bermejo, R., Saavedra, L.: Modified Lagrange-Galerkin methods of first and second order in time for convection-diffusion problems. Numer. Math. 120, 601–638 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bermudez, A., Nogueiras, M.R., Vazquez, C.: Numerical analysis of convection-diffusion-reaction problems with higher order characteristics/finite elements. I. Time discretization. SIAM J. Numer. Anal. 44, 1829–1853 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bermudez, A., Nogueiras, M.R., Vazquez, C.: Numerical analysis of convection-diffusion-reaction problems with higher order characteristics/finite elements, II. Fully discretized scheme and quadrature formulas. SIAM J. Numer. Anal. 44, 1854–1876 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boukir, K., Maday, Y., Métivet, B.: A high order characteristics method for the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 116, 211–218 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boukir, K., Maday, Y., Métivet, B., Razafindrakoto, E.: A higer-order characteristics/finite element method for the incompressible Navier–Stokes equations. Int. J. Numer. Math. Fluids 25, 1421–1454 (1997)

    Article  MATH  Google Scholar 

  10. Celia, M.A., Russell, T.F., Herrera, I., Ewing, R.E.: An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation. Adv. Water. Resour. 13, 187–206 (1990)

    Article  Google Scholar 

  11. Cockburn, B., Qiu, W., Shi, K.: Superconvergent HDG methods on isoparametric elements for second-order elliptic problems. SIAM J. Numer. Anal. 50, 1417–1432 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dawson, C.N., Russell, T.F., Wheeler, M.F.: Some improved error estimates for the modified method of characteristics. SIAM J. Numer. Anal. 26, 1487–1512 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Demkowicz, L., Kurtz, J., Pardo, D., Paszenski, M., Rachowicz, W., Zdunek, A.: Computing with hp-Adaptive Finite Element: Vol. 2. Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications. Chapman & Hall/CRC Press, Taylor and Francis (2008)

  14. Demkowicz, L., Oden, J.T.: An adaptive characteristic Petrov-Galerkin finite element method for convection-dominated linear and nonlinear parabolic problems in one space variable. J. Comput. Phys. 67, 188–213 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Douglas Jr, J., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of charateristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ewing, R.E., Wang, H.: A summary of numerical methods for time-dependent advection-dominated partial differential equations. J. Comput. Appl. Math. 128, 423–445 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ewing R.E., Wang, H.: Eulerian-Lagrangian localized adjoint methods for variable-coefficient advective-diffusive-reactive equations in groundwater contaminant transport. In: Gomez, Hennart (eds.) Advances in Optimization and Numerical Analysis, Mathematics and Its Applications, vol. 275, pp. 185–205. Kluwer Academic Publishers, Dordrecht, Netherlands (1994)

  18. Ewing, R.E., Wang, H.: An optimal-order estimate for Eulerian-Lagrangian localized adjoint methods for variable-coefficient advection-reaction problems. SIAM J. Numer. Anal. 33, 318–348 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Feng, X., Neilan, M.: A modified characteristic finite element method for a fully nonlinear formulation of the semigeostrophic flow equations. SIAM J. Numer. Anal. 47, 2952–2981 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems. Springer, New York (2011)

    MATH  Google Scholar 

  21. Garder, A.O., Peaceman, D.W., Pozzi, A.L.: Numerical calculations of multidimensional miscible displacement by the method of characteristics. Soc. Pet. Eng. J. 4, 26–36 (1964)

    Article  Google Scholar 

  22. Girault, V., Nochetto, R.H., Scott, R.: Maximum-norm stability of the finite element Stokes projection. J. Math. Pures Appl. 84, 279–330 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Girault, V., Raviart, P.A.: Finite element method for Navier–Stokes equations: theory and algorithms. Springer-Verlag, Berlin (1987)

    MATH  Google Scholar 

  24. Guzman, J., Leykekhman, D.: Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra. Math. Comp. 81, 1879–1902 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hansbo, P.: The characteristic streamline diffusion method for the time-dependent incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 99, 171–186 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. He, Y., Sun, W.: Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal. 45, 837–869 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. He, Y.: Optimal error estimate of the penalty finite element method for the time-dependent Navier-Stokes equations. Math. Comput. 74, 1201–1216 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kaazempur-Mofrad, M.R., Minev, P.D., Ethier, C.R.: A characteristic/finite element algorithm for time-dependent 3-D advection-dominated transport using unstructured grids. Comput. Method. Appl. Mech. Eng. 192, 1281–1298 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Krishnamachari, S.V., Hayes, L.J., Russell, T.F.: A finite element alternating-direction method combined with a modified method of characteristics for convection-diffusion problems. SIAM J. Numer. Anal. 26, 1462–1473 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, B., Wang, J., Sun, W.: The stability and convergence of fully discrete Galerkin-Galerkin FEMs for porous medium flows. Commun. Comput. Phys. 15, 1141–1158 (2014)

    Article  MathSciNet  Google Scholar 

  34. Liang, D., Wang, W., Cheng, Y.: An efficient second-order characteristic finite element method for non-linear aerosol dynamic equations. Int. J. Numer. Methods Eng. 80, 338–354 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Marion M., Temam, R.: Navier-Stokes equations: theory and approximation. In: Handbook of Numerical Analysis, vol. VI, North-Holland, Amsterdam 503–689 (1998)

  36. Maz’ya, V., Rossmann, J.: Elliptic Equations in Polyhedral Domains. American Mathematical Society, Providence (2010)

    Book  MATH  Google Scholar 

  37. Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier–Stokes equations. Numer. Math. 38, 309–332 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rui, H., Tabata, M.: A second order characteristic finite element scheme for convection-diffusion problems. Numer. Math. 92, 161–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Russell, T.F.: Time stepping along charactercteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media. SIAM J. Numer. Anal. 22, 970–1013 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sesterhenn, J.: A characteristic-type formulation of the Navier–Stokes equations for high order upwind schemes. Comput. Fluids 30, 37–67 (2000)

    Article  MATH  Google Scholar 

  41. Shen, J.: On error estimates of some higher order projection and penalty-projection methods for Navier–Stokes equations. Numer. Math. 62, 49–73 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. Si, Z.: Second order modified method of characteristics mixed defect-correction finite element method for time dependent Navier-Stokes problems. Numer. Algor. 59, 271–300 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Si, Z., Song, X., Huang, P.: Modified Characteristics Gauge-Uzawa finite element method for time dependent conduction-convection problems. J. Sci. Comput. 58, 1–24 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Süli, E.: Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations. Numer. Math. 53, 459–483 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  45. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. North Holland, Amsterdam-New York-Oxford (1977)

    MATH  Google Scholar 

  46. Wang, H.: An optimal-order error estimate for a family of ELLAM-MFEM approximations to porous medium flow. SIAM J. Numer. Anal. 46, 2133–2152 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, J., Si, Z., Sun, W.: A new error analysis of characteristics-mixed FEMs for miscible displacement in porous media. SIAM J. Numer. Anal. 52, 3000–3020 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zlámal, M.: Curved elements in the finite element method. I*. SIAM J. Numer. Anal. 10, 229–240 (1973)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees for their valuable suggestions and comments, which helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Si.

Additional information

Z. Si’s work was supported in part by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 11302915), Chinese NSF (Grant No. 11226306, 11301156 and 11401177) and the Doctoral Foundation of Henan Polytechnic University (No. B2012-56). J. Wang’s work was supported in part by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 11302915), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 15XNLF15). W. Sun’s work was supported in part by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 11302915).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, Z., Wang, J. & Sun, W. Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations. Numer. Math. 134, 139–161 (2016). https://doi.org/10.1007/s00211-015-0767-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0767-9

Mathematics Subject Classification

Navigation