Skip to main content
Log in

Unconditional long-time stability of a velocity–vorticity method for the 2D Navier–Stokes equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We prove unconditional long-time stability for a particular velocity–vorticity discretization of the 2D Navier–Stokes equations. The scheme begins with a formulation that uses the Lamb vector to couple the usual velocity–pressure system to the vorticity dynamics equation, and then discretizes with the finite element method in space and implicit–explicit BDF2 in time, with the vorticity equation decoupling at each time step. We prove the method’s vorticity and velocity are both long-time stable in the \(L^2\) and \(H^1\) norms, without any timestep restriction. Moreover, our analysis avoids the use of Gronwall-type estimates, which leads us to stability bounds with only polynomial (instead of exponential) dependence on the Reynolds number. Numerical experiments are given that demonstrate the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Badia, S., Codina, R., Gutiérrez-Santacreu, J.V.: Long-term stability estimates and existence of a global attractor in a finite element approximation of the Navier–Stokes equations with numerical subgrid scale modeling. SIAM J. Numer. Anal. 48(3), 1013–1037 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bensow, R., Larson, M.: Residual based VMS subgrid modeling for vortex flows. Comput. Methods Appl. Mech. Eng. 199, 802–809 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2008)

  4. Chen, W., Gunzburger, M., Sun, D., Wang, X.: Efficient and long-time accurate second-order methods for Stokes–Darcy system. SIAM J. Numer. Anal. 51(5), 2563–2584 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Foias, C., Temam, R.: Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal. 87(2), 359–369 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gallay, T., Wayne, C.E.: Invariant manifolds and the long-time asymptotics of the Navier–Stokes and vorticity equations on \(R^2\). Arch. Ration. Mech. Anal. 163(3), 209–258 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gatski, T.B.: Review of incompressible fluid flow computations using the vorticity–velocity formulation. Appl. Numer. Math. 7(3), 227–239 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gottlieb, S., Tone, F., Wang, C., Wang, X., Wirosoetisno, D.: Long time stability of a classical efficient scheme for two-dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 50(1), 126–150 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guillen-Gonzalez, F., Gutierrez-Santacreu, J.V.: Unconditional stability and convergence of fully discrete schemes for 2D viscous fluids models with mass diffusion. Math. Comput. 77(263), 1495–1524 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gunzburger, M.: Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms. Academic Press, Boston (1989)

    Google Scholar 

  11. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (2002)

    MATH  Google Scholar 

  12. Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. Part I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19(2), 275–311 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. Part II: stability of solutions and error estimates uniform in time. SIAM J. Numer. Anal. 23(4), 750–777 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heywood, J., Rannacher, R.: Finite-element approximation of the nonstationary Navier–Stokes problem. Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. John, V.: Reference values for drag and lift of a two dimensional time-dependent flow around a cylinder. Int. J. Numer. Methods Fluids 44, 777–788 (2004)

    Article  MATH  Google Scholar 

  16. Johnson, C., Rannacher, R., Boman, M.: Numerics and hydrodynamic stability: toward error control in computational fluid dynamics. SIAM J. Numer. Anal. 32(4), 1058–1079 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, H.K., Olshanskii, M.A., Rebholz, L.G.: On error analysis for the 3D Navier–Stokes equations in velocity–vorticity–helicity form. SIAM J. Numer. Anal. 49(2), 711–732 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow, vol. 27. Cambridge University Press, Cambridge (2002)

  19. Najjar, F., Vanka, S.: Simulations of the unsteady separated flow past a normal flat plate. Int. J. Numer. Methods Fluids 21(7), 525–547 (1995)

    Article  MATH  Google Scholar 

  20. Olshanskii, M.A., Heister, T., Rebholz, L., Galvin, K.: Natural vorticity boundary conditions on solid walls. Comput. Methods Appl. Mech. Eng. 297, 18–37 (2015)

  21. Olshanskii, M.A., Rebholz, L.: Velocity–vorticity–helicity formulation and a solver for the Navier–Stokes equations. J. Comput. Phys. 229, 4291–4303 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Saha, A.: Far-wake characteristics of two-dimensional flow past a normal flat plate. Phys. Fluids 19(128110), 1–4 (2007)

    MATH  Google Scholar 

  23. Saha, A.: Direct numerical simulation of two-dimensional flow past a normal flat plate. J. Eng. Mech. 139(12), 1894–1901 (2013)

    Article  Google Scholar 

  24. Simo, J., Armero, F.: Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier–Stokes and euler equations. Comput. Methods Appl. Mech. Eng. 111(1), 111–154 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tone, F.: On the long-time stability of the Crank–Nicolson scheme for the 2D Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 23(5), 1235–1248 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tone, F., Wirosoetisno, D.: On the long-time stability of the implicit Euler scheme for the two-dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 44(1), 29–40 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, X.: An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier–Stokes equations. Numer. Math. 121(4), 753–779 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo G. Rebholz.

Additional information

T. Heister was partially supported by the Computational Infrastructure in Geodynamics initiative (CIG), through the National Science Foundation under Award No. EAR-0949446 and The University of California—Davis and NSF Grant DMS1522191. M. A. Olshanskii was partially supported by Army Research Office Grant 65294-MA and NSF Grant DMS1522192. L. G. Rebholzz was partially supported by Army Research Office Grant 65294-MA and NSF Grant DMS1522191.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heister, T., Olshanskii, M.A. & Rebholz, L.G. Unconditional long-time stability of a velocity–vorticity method for the 2D Navier–Stokes equations. Numer. Math. 135, 143–167 (2017). https://doi.org/10.1007/s00211-016-0794-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-016-0794-1

Mathematics Subject Classification

Navigation