Skip to main content
Log in

A conforming mixed finite element method for the Navier–Stokes/Darcy coupled problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we develop the a priori analysis of a mixed finite element method for the coupling of fluid flow with porous media flow. Flows are governed by the Navier–Stokes and Darcy equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law. We consider the standard mixed formulation in the Navier–Stokes domain and the dual-mixed one in the Darcy region, which yields the introduction of the trace of the porous medium pressure as a suitable Lagrange multiplier. The finite element subspaces defining the discrete formulation employ Bernardi-Raugel and Raviart-Thomas elements for the velocities, piecewise constants for the pressures, and continuous piecewise linear elements for the Lagrange multiplier. We show stability, convergence, and a priori error estimates for the associated Galerkin scheme. Finally, several numerical results illustrating the good performance of the method and confirming the theoretical rates of convergence are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agouzal, A., Thomas, J.-M.: An extension theorem for equilibrium finite elements spaces. Japan J. Indust. Appl. Math. 13(2), 257–266 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ainsworth, M., Guzmán, J, Sayas, F.-J.: Discrete extension operators for mixed finite element spaces on locally refined meshes. Math. Comp. (2016). doi:10.1090/mcom/3074

  3. Alvarez, M., Gatica, G.N., Ruiz-Baier, R.: An augmented mixed-primal finite element method for a coupled flow-transport problem. ESAIM Math. Model. Numer. Anal. 49(5), 1399–1427 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aziz, A.K., Babuška, I.: Survey lectures on the mathematical foundations of the finite element method. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972), pp. 1–359. Academic Press, New York: With the collaboration of G. Fix and R. B, Kellogg (1972)

  5. Babuška, I., Gatica, G.N.: On the mixed finite element method with Lagrange multipliers. Numer. Methods Partial Differ. Equ. 19(2), 192–210 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Badea, L., Discacciati, M., Quarteroni, A.: Numerical analysis of the Navier–Stokes/Darcy coupling. Numer. Math. 115(2), 195–227 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Badia, S., Codina, R.: Stokes, Maxwell and Darcy: a single finite element approximation for three model problems. Appl. Numer. Math. 62(4), 246–263 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  9. Bernardi, C., Raugel, G.: Analysis of some finite elements for the Stokes problem. Math. Comp. 44(169), 71–79 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. Rev. Française Automat. Informat. Recherche Opérationnelle, sér. Rouge 8:129–151 (1974)

  11. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Method. Springer, New York (1991)

    Book  MATH  Google Scholar 

  12. Camaño, J., Gatica, G.N., Oyarzúa, R., Tierra, G.: An augmented mixed finite element method for the Navier–Stokes equations with variable viscosity. SIAM J. Numer. Anal. 54(2), 1069–1092 (2016)

  13. Cao, Y., Gunzburger, M., He, X., Wang, X.: Robin-Robin domain decomposition methods for the steady-state Stokes-Darcy system with the Beavers-Joseph interface condition. Numer. Math. 117(4), 601–629 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, W., Gunzburger, M., Hua, F., Wang, X.: A parallel Robin-Robin domain decomposition method for the Stokes-Darcy system. SIAM J. Numer. Anal. 49(3), 1064–1084 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ciarlet, P.: Linear and Nonlinear Functional Analysis with Applications. Society for Industrial and Applied Mathematics, Philadelphia (2013)

    MATH  Google Scholar 

  16. Colmenares, E., Gatica, G.N., Oyarzúa, R.: Fixed point strategies for mixed variational formulations of the stationary Boussinesq problem. C. R. Math. Acad. Sci. Paris 354(1), 57–62 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Davis, T.A.: Algorithm 832: UMFPACK V4.3-an unsymmetric-pattern multifrontal method. ACM Trans. Math Softw. 30(2), 196–199 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Discacciati, M.: Domain Decomposition Methods for the Coupling of Surface and Groundwater Flows. PhD thesis, École Polytechnique Fédérale de Lausanne, Switzerland (2004)

  19. Discacciati, M.: Coupling free and porous-media flows: models and numerical approximation. Simulation of Flow in Porous Media. Applications in Energy and Environment, vol. 12 of Radon Series on Computational and Applied Mathematics, pp. 107–138. De Gruyter, Berlin and Boston (2013)

  20. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43, 57–74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

  22. Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations. Electron. Trans. Numer. Anal. 26, 350–384 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Gatica, G., Ruiz-Baier, R., Tierra, G.: A mixed finite element method for Darcy’s equations with pressure dependent porosity. Math. Comp. 85(297), 1–33 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gatica, G.N.: A Simple Introduction to the Mixed Finite Element Method. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  25. Gatica, G.N., Hsiao, G.C., Meddahi, S.: A coupled mixed finite element method for the interaction problem between an electromagnetic field and an elastic body. SIAM J. Numer. Anal. 48(4), 1338–1368 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gatica, G.N., Meddahi, S., Oyarzúa, R.: A conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal. 29(1), 86–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gatica, G.N., Oyarzúa, R., Sayas, F.-J.: Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem. Math. Comp. 80(276), 1911–1948 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gatica, G.N., Oyarzúa, R., Sayas, F.-J.: Convergence of a family of Galerkin discretizations for the Stokes-Darcy coupled problem. Numer. Methods Part. Differ Equ. 27(3), 721–748 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gatica, G.N., Oyarzúa, R., Sayas, F.-J.: A twofold saddle point approach for the coupling of fluid flow with nonlinear porous media flow. IMA J. Numer. Anal. 32(3), 845–887 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  31. Girault, V., Rivière, B.: DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM J. Numer. Anal. 47, 2052–2089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Girault, V., Vassilev, D., Yotov, I.: Mortar multiscale finite element methods for Stokes-Darcy flows. Numer. Math. 127(1), 93–165 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jäger, W., Mikelić, A.: On the interface boundary condition of Beavers, Joseph and Saffman. SIAM J. Appl. Math. 60(4), 1111–1127 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kanschat, G., Rivière, B.: A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Comput. Phys. 229(17), 5933–5943 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Karper, T., Mardal, K.-A., Winther, R.: Unified finite element discretizations of coupled Darcy-Stokes flow. Numer. Methods Partial Differ. Equ. 25(2), 311–326 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kovasznay, L.I.G.: Laminar flow behind a two-dimensional grid. Proc. Camb. Philos. Soc. 44, 58–62 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  39. Layton, W.L., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lipnikov, K., Vassilev, D., Yotov, I.: Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes-Darcy flows on polygonal and polyhedral grids. Numer. Math. 126(2), 321–360 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Márquez, A., Meddahi, S., Sayas, F.-J.: Strong coupling of finite element methods for the Stokes-Darcy problem. IMA J. Numer. Anal. 35(2), 969–988 (2015)

  42. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994)

    MATH  Google Scholar 

  43. Raviart, P.-A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975)

  44. Roberts, J.E., Thomas, J.-M.: Mixed and hybrid methods. In: Handbook of Numerical Analysis, vol. II, pp 523–639. North-Holland, Amsterdam (1991)

  45. Saffman, P.G.: On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 1, 93–101 (1971)

    Article  MATH  Google Scholar 

  46. Temam, R.: Navier–Stokes equations. Theory and Numerical Analysis. Studies in Mathematics and its Applications, vol. 2. North-Holland Publishing Co., Amsterdam-New York-Oxford (1977)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Oyarzúa.

Additional information

Marco Discacciati acknowledges funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 294229. Ricardo Oyarzúa acknowledges funding from CONICYT-Chile through project Fondecyt 11121347, project Anillo ACT1118 (ANANUM) and by Universidad del Bío-Bío through DIUBB project GI 151408/VC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Discacciati, M., Oyarzúa, R. A conforming mixed finite element method for the Navier–Stokes/Darcy coupled problem. Numer. Math. 135, 571–606 (2017). https://doi.org/10.1007/s00211-016-0811-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-016-0811-4

Mathematics Subject Classification

Navigation