Skip to main content
Log in

An adaptive density-guided approach for the generation of potential energy surfaces of polyatomic molecules

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We present an adaptive density-guided approach for the construction of Born–Oppenheimer potential energy surfaces (PES) in rectilinear normal coordinates for use in vibrational structure calculations. The procedure uses one-mode densities from vibrational structure calculations for a dynamic sampling of PESs. The implementation of the procedure is described and the accuracy and versatility of the method is tested for a selection of model potentials, water, difluoromethane and pyrimidine. The test calculations illustrate the advantage of local basis sets over harmonic oscillator basis sets in some important aspects of our procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In relation with the check of Eq. 15, the extension is set to 1/8 of the initial spanned space. The program evaluates the amount of density recoverable in a specific direction by assuming a linear decay of the density outside the grid boundaries; if the estimated residual density is larger than half of \(\epsilon_{\rho},\) the extension is trigged on. If the condition of Eq. 15 is not fulfilled, but none of the contributions in either direction is found large enough to trigger on the extension, i.e. due to an erroneous estimate of the density recoverable, the grid is extended in both directions with 1/16 of the initial grid domain.

  2. It was found adequate to enforce the support for the localized basis set to be 50% larger (with a maximum allow 20 a.u.). than the space spanned by the evaluation points.

  3. On a Opteron 2.2 GHz processor, 2 GB memory RAM.

  4. A: the 1D surfaces were converged with \(\epsilon_{\rm rel} = 1 \times 10^{-2}\) and \(\epsilon_{\rm abs} = 1 \times 10^{-6},\) whereas the 2D surfaces were converged with \(\epsilon_{\rm rel} = 2.5 \times 10^{-1}\) and \(\epsilon_{\rm abs} = 2.5 \times 10^{-5}.\) Gaussian basis sets were used in the VSCF calculations. B: the 1D surfaces were converged with \(\epsilon_{\rm rel} = 5 \times 10^{-3}\) and \(\epsilon_{\rm abs} = 5 \times 10^{-7},\) whereas the 2D surfaces were converged with \(\epsilon_{\rm rel} = 1.2 \times 10^{-1}\) and \(\epsilon_{\rm abs} = 1.2 \times 10^{-5}\) Gaussian basis sets were used in the VSCF calculations. C: the 1D surfaces were converged with \(\epsilon_{\rm rel} = 3 \times 10^{-3}\) and \(\epsilon_{\rm abs} = 3 \times 10^{-7},\) whereas the 2D surfaces were converged with \(\epsilon_{\rm rel} = 5 \times 10^{-2}\) and \(\epsilon_{\rm abs} = 5 \times 10^{-6}\) Gaussian basis sets were used in the VSCF calculations. D: the 1D surfaces were converged with \(\epsilon_{\rm rel} = 5 \times 10^{-3}\) and \(\epsilon_{\rm abs} = 5 \times 10^{-7},\) whereas the 2D surfaces were converged with \(\epsilon_{\rm rel} = 1.2 \times 10^{-1}\) and \(\epsilon_{\rm abs} = 1.2 \times 10^{-5}\) HO basis sets were used in the VSCF calculations.

References

  1. Carter S, Culik SJ, Bowman JM (1997) J Chem Phys 107:10458

    Article  CAS  Google Scholar 

  2. Kongsted J, Christiansen O (2006) J Chem Phys 125:124108

    Article  Google Scholar 

  3. Bowman JM, Carter S, Huang XC (2003) Int Rev Phys Chem 22:533

    Article  CAS  Google Scholar 

  4. Jung JO, Gerber RB (1996) J Chem Phys 105:10332

    Article  CAS  Google Scholar 

  5. Rauhut G (2004) J Chem Phys 121:9313

    Article  CAS  Google Scholar 

  6. Benoit DM (2004) J Chem Phys 120:562

    Article  CAS  Google Scholar 

  7. Yagi K, Hirata S, Hirao K (2007) Theor Chem Acc 118:681

    Article  CAS  Google Scholar 

  8. Toffoli D, Kongsted J, Christiansen O (2007) J Chem Phys 127:204106

    Article  CAS  Google Scholar 

  9. Chaban GM, Jung JO, Gerber RB (1999) J Chem Phys 111:1823

    Article  CAS  Google Scholar 

  10. Yagi K, Taketsugu T, Hirao K, Gordon M (2000) J Chem Phys 113:1005

    Article  CAS  Google Scholar 

  11. Collins M (2002) Theor Chem Acc 108:313

    CAS  Google Scholar 

  12. Manzhos S, Carrington T (2006) J Chem Phys 125:084109

    Article  Google Scholar 

  13. Manzhos S, Carrington T (2007) J Chem Phys 127:014103

    Article  Google Scholar 

  14. Dawes R, Thompson DL, Guo Y, Wagner AF, Minkoff M (2007) J Chem Phys 126:184108

    Article  Google Scholar 

  15. Dawes R, Thompson DL, Wagner AF, Minkoff M (2008) J Chem Phys 128:084107

    Article  Google Scholar 

  16. Maeda S, Watanabe Y, Ohno K (2008) J Chem Phys 128:144111

    Article  Google Scholar 

  17. Huang X, Braams BJ, Bowman JM (2005) J Chem Phys 122:044308

    Article  Google Scholar 

  18. Tew D, Handy N, Carter S (2006) J Chem Phys 125:084313

    Google Scholar 

  19. Vendrell O, Gatti F, Lauvergnat D, Meyer HD (2007) J Chem Phys 127:184302

    Article  Google Scholar 

  20. Pele L, Gerber RB (2008) J Chem Phys 128:165105

    Article  Google Scholar 

  21. Oyanagi C, Yagi K, Taketsugu T, Hirao K (2006) J Chem Phys 124:064311

    Google Scholar 

  22. Midascpp (molecular interactions, dynamics and simulation chemistry program package in c++) (2007). http://www.chem.au.dk/∼midas

  23. Hamilton IP, Light JC (1986) J Chem Phys 84:306

    Article  CAS  Google Scholar 

  24. Poirier B, Light J (2000) J Chem Phys 113:211

    Article  CAS  Google Scholar 

  25. Partridge H, Schwenke DW (1997) J Chem Phys 106:4618

    Article  CAS  Google Scholar 

  26. Dalton, A molecular electronic structure program, release 2.0 (2005). http://www.kjemi.uio.no/software/dalton/dalton.html

  27. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  28. Watson JKG (1968) Mol Phys 15:479

    Article  CAS  Google Scholar 

  29. Beck MH, Jackle A, Worth GA, Meyer HD (2000) Phys Rep 324:1

    Article  CAS  Google Scholar 

  30. Christiansen O (2007) Phys Chem Chem Phys 9:2942

    Article  CAS  Google Scholar 

  31. Bowman JM (1978) J Chem Phys 68:608

    Article  CAS  Google Scholar 

  32. Bowman JM (1986) Acc Chem Res 19:202

    Article  CAS  Google Scholar 

  33. Gerber RB, Ratner MA (1988) Adv Chem Phys 70:97

    Article  CAS  Google Scholar 

  34. Norris LS, Ratner MA, Roitberg AE, Gerber RB (1996) J Chem Phys 105:11261

    Article  CAS  Google Scholar 

  35. Christiansen O (2003) J Chem Phys 119:5773

    Article  CAS  Google Scholar 

  36. Matsunaga N, Chaban GM, Gerber RB (2002) J Chem Phys 117:3541

    Article  CAS  Google Scholar 

  37. Bowman JM, Christoffel K, Tobin F (1979) J Phys Chem 83:905

    Article  CAS  Google Scholar 

  38. Christoffel KM, Bowman JM (1982) Chem Phys Lett 85:220

    Article  CAS  Google Scholar 

  39. Carter S, Bowman JM, Handy NC (1998) Theor Chem Acc 100:191

    CAS  Google Scholar 

  40. Christiansen O (2004) J Chem Phys 120:2149

    Article  CAS  Google Scholar 

  41. Christiansen O (2004) J Chem Phys 120:2140

    Article  CAS  Google Scholar 

  42. Christiansen O (2005) J Chem Phys 122:194105

    Article  Google Scholar 

  43. Seidler P, Christiansen O (2007) J Chem Phys 126:204101

    Article  Google Scholar 

  44. Seidler P, Hansen MB, Christiansen O (2008) J Chem Phys 128:154113

    Article  Google Scholar 

  45. Coon JB, Naugle NW, Mckenzie RD (1966) J Mol Spectr 20:107

    Article  CAS  Google Scholar 

  46. Lin CK, Chang HC, Lin SH (2007) J Phys Chem A 111:9347

    Article  CAS  Google Scholar 

  47. Xie T, Bowman JM (2002) J Chem Phys 117:10487

    Article  CAS  Google Scholar 

  48. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51

    Article  CAS  Google Scholar 

  49. Zhao Y, Truhlar D (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  50. Dunning Jr TH, Hay PJ (1977) In: Schaefer III HF (ed) Modern theoretical chemistry. Plenum Press, New York, p 1

Download references

Acknowledgments

This work has been supported by the Lundbeck Foundation, the Danish national research foundation, the Danish Center for Scientific Computing (DCSC), and EUROHORCs through a EURYI award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Sparta.

Appendix

Appendix

1.1 Integrals for distributed Gaussian basis sets

Gaussian integrals can be easily done analytically from a few standard integrals (\(\int_{-\infty}^\infty e^{-\lambda x^2}\,{\rm d}x=\sqrt{{\frac{\pi} {\lambda}}}, \int_{-\infty}^\infty x^{n} e^{-\lambda x^2}\,{\rm d}x=(-{\frac{\rm d} {{\rm d}\lambda}})^{n/2}\sqrt{{\frac{\pi} {\lambda}}}\) with n an even positive integer number) and the fact that the product of two Gaussians is another Gaussian:

$$ G_{ij}(x) = G_{i}(x)G_{j}(x) = \left({\frac{2\zeta_{ij}} {\pi}} \right)^{{\frac{1} {4}}} \exp(-\zeta_{ij}(Z_{i}-Z_{j})^2) \left({\frac{2(\zeta_{i} + \zeta_j)} {\pi}}\right)^{{\frac{1} {4}}} \exp(-(\zeta_{i}+\zeta_j) (x-Z_{ij})^2) $$
(22)

with

$$ \zeta_{ij} = {\frac{\zeta_{i} \zeta_{j}} {\zeta_{i} + \zeta_{j}}} $$
(23)
$$ Z_{ij} = {\frac{\zeta_{i} Z_{i} + \zeta_{j} Z_{j}} {\zeta_{i} + \zeta_{j}}} $$
(24)

The overlap integrals are

$$ O_{ij} = \langle {G_{i}} |{G_{j}} \rangle = \int\limits_{-\infty}^\infty G_{i}^{*}(x) G_{j}(x)\,{\rm d}x = \left({\frac{4\zeta_{ij}} {(\zeta_{i}+\zeta_{j})}}\right)^{({\frac{1} {4}})} \exp(-\zeta_{ij}(Z_{i}-Z_{j})^2) $$
(25)

Clearly, the basis set of distributed Gaussians is a non-orthogonal basis with overlaps decaying fast with the distance between the centers of the Gaussians and with increasing exponents. Other integrals are

$$ (x^n)_{ij} = \langle {G_i} | {x^n} |{G_j} \rangle = \sum_{k=0}^{int(n/2)} {\left(\begin{array}{l}{n} \\ {2k} \end{array}\right)} {\frac{(2k-1)!!} {2^k(\zeta_{i}+\zeta_{j})^k}} Z_{ij}^{n-2k} O_{ij} $$
(26)
$$ \left({\frac{\rm d} {{\rm d}x}}\right)_{ij}=\langle {G_i} | {{\rm d}/{\rm d}x} |{G_j} \rangle=2 \zeta_jO_{ij}(Z_j-Z_{ij}) $$
(27)
$$ T_{ij} = -{\frac{1} {2}} \langle {G_i} | {\frac{d^2} {dx^2}} |{G_j} \rangle = \zeta_{j}O_{ij}\left[1-2\zeta_j\left({\frac{1} {2(\zeta_{i}+\zeta_{j})}}+Z_{ij}^2-2Z_{j}Z_{ij}+Z_{j}^2\right)\right] $$
(28)

with \((2k-1)!! = (2k-1)\times(2k-3){\ldots}\times 1\) and \(0!!=1.\)

Other integrals have to be computed if the Hamiltonian contains Watson kinetic energy terms, which can be easily derived from the integrals listed above:

$$ \langle {G_i} | {x^n{\frac{{\rm d}} {{\rm d}x}}} |{G_j} \rangle = -2\zeta_{j} \langle {G_i} | {x^{n+1}} |{G_j} \rangle+2\zeta_{j}Z_{j} \langle {G_i} | {x^n} |{G_j} \rangle $$
(29)
$$ \langle {G_i} | {{\frac{{\rm d}} {{\rm d}x}}x^n} |{G_j} \rangle = n \langle {G_i} | {x^{n-1}} |{G_j} \rangle+\langle {G_i} | {x^n{\frac{{\rm d}} {{\rm d}x}}} |{G_j} \rangle $$
(30)
$$ \begin{aligned} \langle {G_i} | {{\frac{{\rm d}} {{\rm d}x}}{x^n}{\frac{{\rm d}} {{\rm d}x}}} |{G_j} \rangle &= (4\zeta_{j}^2Z_{j}^2-2\zeta_{j}(n+1)) \langle {G_i} | {x^n} |{G_j} \rangle\\ &\quad + 2n\zeta_{j}Z_{j} \langle {G_i} | {x^{n-1}} |{G_j} \rangle\\ &\quad + 4\zeta_j^2\langle {G_i} | {x^{n+2}} |{G_j} \rangle-8\zeta_{j}^2Z_{j}\langle {G_i} | {x^{n+1}} |{G_j} \rangle \end{aligned} $$
(31)

When fitting with scaled coordinates all these integrals are multiplied by a common factor of \((\sqrt{\omega})^n\) when the scaled coordinate x enters with a power of n.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sparta, M., Toffoli, D. & Christiansen, O. An adaptive density-guided approach for the generation of potential energy surfaces of polyatomic molecules. Theor Chem Acc 123, 413–429 (2009). https://doi.org/10.1007/s00214-009-0532-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0532-1

Keywords

Navigation