Skip to main content
Log in

Structure, stability and electronic property of the gold-doped germanium clusters: AuGe n (n = 2–13)

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The structure, stability and electronic property of the AuGe n (n = 2–13) clusters with different spin configurations are systematically investigated with density-functional theory approach at UB3LYP/LanL2DZ level. In examining the lowest energy structures, it is found that the growth behaviors for the small-sized AuGe n (n = 2–9) clusters and relatively large-sized AuGe n (n = 10–13) clusters are different. As the number of Ge atom increases, the Au atom would gradually move from convex to surface and to interior sites. For the most stable structures of AuGe n (n = 10–13) clusters, the Au atom would be completely surrounded by the Ge atoms to form Au-encapsulated Ge n cages. Natural population analysis shows that the charges always transfer from the Au atom to the Ge n framework except for the AuGe2 cluster. This indicates that the Au atom acts as electron donor even the 5d orbitals of the Au atom are not significantly involved in chemical bonding. The analyses of the average atomic binding energies as well as the dissociation energies and the second-order differences of total energy show that the AuGe n clusters with n = 5, 9 and 12 are more stable than their neighboring ones, in which the bicapped pentagonal prism AuGe12 in D 2d symmetry is most stable. The highest occupied molecular orbital–lowest unoccupied molecular orbital gaps are explored to be in the region of semiconductors and the more stable clusters have slightly smaller gaps. It could be expected that the stable clusters might be considered as the novel building blocks in practical applications, e.g., the cluster-assembled semiconductors or optoelectronic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Torres MB, Fernandez EM, Balbas LC (2007) Phys Rev B 75:205425

    Article  Google Scholar 

  2. Guo LJ, Liu X, Zhao GF, Luo YH (2007) J Chem Phys 126:234704

    Article  Google Scholar 

  3. Kawamura H, Kumar V, Kawazoe Y (2004) Phys Rev B 70:245433

    Article  Google Scholar 

  4. Chuang FC, Hsieh YY, Hsu CC, Albao MA (2007) J Chem Phys 127:144313

    Article  Google Scholar 

  5. Peng Q, Shen JJ (2008) J Chem Phys 128:084711

    Article  Google Scholar 

  6. Ma L, Zhao JJ, Wang JG, Lu QL, Zhu LZ, Wang GH (2005) Chem Phys Lett 411:279

    Article  CAS  Google Scholar 

  7. Wang J, Ma QM, Xie Z, Liu Y, Li YC (2007) Phys Rev B 76:035406

    Article  Google Scholar 

  8. Wang JG, Zhao JJ, Ma L, Wang BL, Wang GH (2007) Phys Lett A 367:335

    Article  CAS  Google Scholar 

  9. Zhao WJ, Yang Z, Yan YL, Lei XL, Ge GX, Wang QL, Luo YH (2007) Acta Phys Sin 56:2596

    CAS  Google Scholar 

  10. Ma L, Zhao JJ, Wang JG, Wang BL, Lu QL, Wang GH (2006) Phys Rev B 73:125439

    Article  Google Scholar 

  11. Hou XJ, Gopakumar G, Lievens P, Nguyen MT (2007) J Phys Chem A 111:13544

    Article  CAS  Google Scholar 

  12. Han JG, Hagelberg F (2009) J Comput Theory Nanosci 6:257

    Article  CAS  Google Scholar 

  13. Han JG, Xiao CY, Hagelberg F (2002) Struct Chem 13:173

    Article  CAS  Google Scholar 

  14. Zhao WJ, Wang YX (2008) Chem Phys 352:291

    Article  CAS  Google Scholar 

  15. Zhao WJ, Wang YX (2009) J Mol Struct (Theochem) 901:18

    Article  CAS  Google Scholar 

  16. Wang J, Han JG (2006) J Phys Chem B 110:7820

    Article  CAS  Google Scholar 

  17. Wang J, Han JG (2005) J Chem Phys 123:244303

    Article  Google Scholar 

  18. Wang J, Han JG (2007) Chem Phys 342:253

    CAS  Google Scholar 

  19. Wang J, Han JG (2006) J Phys Chem A 110:12670

    Article  CAS  Google Scholar 

  20. Jing Q, Tian FY, Wang YX (2008) J Chem Phys 128:124319

    Article  Google Scholar 

  21. Wang J, Han JG (2008) J Phys Chem A 112:3224

    Article  CAS  Google Scholar 

  22. Lu J, Nagase S (2003) Chem Phys Lett 372:394

    Article  CAS  Google Scholar 

  23. Zhang X, Li GL, Gao Z (2001) Rapid Commun Mass Spectrom 15:1573

    Article  CAS  Google Scholar 

  24. Kumar V, Kawazoe Y (2003) Appl Phys Lett 83:2677

    Article  CAS  Google Scholar 

  25. Kumar V, Singh AK, Kawazoe Y (2004) Nano Lett 4:677

    Article  CAS  Google Scholar 

  26. Kumar V, Kawazoe Y (2002) Phys Rev Lett 88:235504

    Article  Google Scholar 

  27. Pyykkö P (1988) Chem Rev 88:563

    Article  Google Scholar 

  28. Bishes GA, Morse MD (1991) J Chem Phys 95:5646

    Article  Google Scholar 

  29. Negishi Y, Nakamura Y, Nakajima A, Kaya K (2001) J Chem Phys 115:3657

    Article  CAS  Google Scholar 

  30. Bonačić-Koutecký V, Burda J, Mitrić R, Ge M, Zampella G, Fantucci P (2002) J Chem Phys 117:3120

    Article  Google Scholar 

  31. Yuan DW, Wang Y, Zeng Z (2005) J Chem Phys 122:114310

    Article  CAS  Google Scholar 

  32. Zorriasatein S, Joshi K, Kanhere DG (2008) J Chem Phys 128:184314

    Article  Google Scholar 

  33. Fa W, Dong JM (2008) J Chem Phys 128:144307

    Article  Google Scholar 

  34. Becke AD (1986) J Chem Phys 84:4524

    Article  CAS  Google Scholar 

  35. Becke AD (1988) J Chem Phys 88:2547

    Article  CAS  Google Scholar 

  36. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  37. Becke AD (1988) J Chem Phys 88:1053

    Article  CAS  Google Scholar 

  38. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  39. Kohn W, Sham LJ (1965) Phys Rev A 140:1133

    Article  Google Scholar 

  40. Hay PJ, Wadt WR (1985) J Chem Phys 82:270

    Article  CAS  Google Scholar 

  41. Wadt WR, Hay PJ (1985) J Chem Phys 82:284

    Article  CAS  Google Scholar 

  42. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  43. Zhao LZ, Lu WC, Wei Q, Zang QJ, Wang CZ, Ho KM (2008) Chem Phys Lett 455:225

    Article  CAS  Google Scholar 

  44. Gaussian 03, Revision B.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Ayala WPY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian Inc., Pittsburgh

  45. Xu WG, Zhao J, Li QS, Xie YM, Schaefer HFIII (2004) Mol Phys 102:579

    Article  CAS  Google Scholar 

  46. Shim I, Sai Baba M, Gingerich KA (2002) Chem Phys 277:9

    Article  CAS  Google Scholar 

  47. Arnold CC, Xu C, Burton GR, Neumark DM (1995) J Chem Phys 102:6982

    Article  CAS  Google Scholar 

  48. Burton GR, Xu C, Neumark DM (1996) Surf Rev Lett 3:383

    Article  CAS  Google Scholar 

  49. Burton GR, Xu C, Arnold CC, Neumark DM (1996) J Chem Phys 104:2757

    Article  CAS  Google Scholar 

  50. Huber KP, Herzberg G (1979) Constants of diatomic molecules. Van Nostrand Reinhold, New York

    Google Scholar 

  51. Pershina V, Anton J, Fricke B (2007) J Chem Phys 127:134310

    Article  CAS  Google Scholar 

  52. Kingcade JE Jr, Choudary UV, Gingerich KA (1979) Inorg Chem 18:3094

    Article  CAS  Google Scholar 

  53. Balasubramanian K, Liao MZ (1987) J Chem Phys 86:5587

    Article  CAS  Google Scholar 

  54. Guo JJ, Yang JX, Die D (2008) Phys B 403:4033

    Article  CAS  Google Scholar 

  55. Lide DR (ed in Chief) (1996–1997) CRC handbook of chemistry and physics, 77th edn. CRC, Boca Raton

  56. Zhang PX, Zhao YF, Hao FY, Song XD, Zhang GH, Wang Y (2009) J Mol Struct (Theochem) 899:111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-He Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XJ., Su, KH. Structure, stability and electronic property of the gold-doped germanium clusters: AuGe n (n = 2–13). Theor Chem Acc 124, 345–354 (2009). https://doi.org/10.1007/s00214-009-0618-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0618-9

Keywords

Navigation