Skip to main content
Log in

Imperfect periodicity and systematic changes of some structural features along linear polymers: the case of rod-like boron/nitrogen nanostructures

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Systematic changes of structural features along polymers are often manifested in deviations from periodicity, having important roles in biopolymers, as well as in simpler systems, where these very deviations are easier to recognize and analyze. Some approximately periodic rod-like structures, called nanoneedles show special, systematic deviations from periodicity. According to our theoretical study, there is a special bonding pattern, involving stronger bonds along the nanoneedle than within the formal rings of layers across the nanoneedle, and there is a monotonic change of some bond lengths from one end to the other along these thin rods. In a series of geometry-optimized Hydrogen-capped boron/nitrogen nanoneedles, regarded as potential semi-rigid building elements of nanostructures, the lengths of bonds roughly parallel with the axes change strictly monotonically from the B–H ends to the N–H ends. The B3LYP/6-31G(d, p) level of density-functional theory computational methods have been used for this H3(B3N3) n H3 (n = 2–10) series of nanoneedles, and an electron density shape description has been applied using a series of molecular isodensity contours. Longer bonds in formally identical structural elements usually indicate weaker linkages. Consequently, such nanoneedles may serve as special structural elements in nanotechnology where various levels of local deformability are required. Additional computational tests on rigidity have been performed: the geometries of these boron nitride nanoneedles were subjected to small modifications and the energy requirements of these deformations were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hoffmann R, Imamura A (1969) Biopolymers 7:207

    Article  CAS  Google Scholar 

  2. Imamura A, Aoki Y, Maekawa K (1991) J Chem Phys 95:5419

    Article  CAS  Google Scholar 

  3. Maekawa K, Imamura A (1993) J Chem Phys 98:7086

    Article  CAS  Google Scholar 

  4. Aoki Y, Imamura A (1992) J Chem Phys 97:8432

    Article  CAS  Google Scholar 

  5. Aoki Y, Suhai S, Imamura A (1994) J Chem Phys 101:10808

    Article  CAS  Google Scholar 

  6. Mitani M, Imamura A (1994) J Chem Phys 101:7712

    Article  CAS  Google Scholar 

  7. Ladik J, Imamura A, Aoki Y, Ruiz y Ruiz MB, Otto P (1999) J Mol Struct (Theochem) 491:49

  8. Mezey PG (1987) Potential energy hypersurfaces. Elsevier, Amsterdam

    Google Scholar 

  9. Heidrich D (ed) (1995) The reaction path in chemistry: current approaches and perspectives. Kluwer, Dordrecht

    Google Scholar 

  10. Mezey PG (1993) Shape in chemistry, an introduction to molecular shape and topology. VCH, New York

    Google Scholar 

  11. Rubio A, Corkill JL, Cohen ML (1994) Phys Rev B 49:5081–5084

    Article  CAS  Google Scholar 

  12. Zunger A (1974) J Phys C-Solid State Phys 7:76–95

    Article  CAS  Google Scholar 

  13. Zunger A (1974) J Phys C-Solid State Phys 7:96–106

    Article  CAS  Google Scholar 

  14. Hoffman R (1964) J Chem Phys 40:2474–2480

    Article  Google Scholar 

  15. Cusachs LC, Reynolds JW (1965) J Chem Phys 43:S160

    Article  CAS  Google Scholar 

  16. Pople JA, Beveridge DL (1970) Approximate MO theory. McGraw Hill, NY

  17. Lam PK, Wentzcovitch RM, Cohen ML (1990) Mater Sci Forum 54–55:165–192

    Article  Google Scholar 

  18. Blase X, Rubio A, Louie SG, Cohen ML (1994) Europhys Lett 28:335–340

    Article  CAS  Google Scholar 

  19. Johnson CJ, Zoellner RW (2009) J Mol Struct THEOCHEM 893:9–16

    Article  CAS  Google Scholar 

  20. Czerw R, Webster S, Carroll DL, Vieira SMC, Birkett PR, Rego CA, Roth S (2003) Appl Phys Lett 83:1617–1619

    Article  CAS  Google Scholar 

  21. Fuentes GG, Borowiak-Palen E, Pichler T, Liu X, Graff A, Behr G, Kalenczuk RJ, Knupfer M, Fink J (2003) Phys Rev B 67:035429

    Article  Google Scholar 

  22. Lee RS, Gavillet J, de la Chapelle ML, Loiseau A, Cochon JL, Pigache D, Thibault J, Willaime F (2001) Phys Rev B 64:121405

    Article  Google Scholar 

  23. Demczyk BG, Cumings J, Zettl A, Ritchie RO (2001) Appl Phys Lett 78:2772–2774

    Article  CAS  Google Scholar 

  24. Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Science 269:966–967

    Article  CAS  Google Scholar 

  25. Loiseau A, Willaime F, Demoncy N, Hug G, Pascard H (1996) Phys Rev Lett 76:4737–4740

    Article  CAS  Google Scholar 

  26. Lauret JS, Arenal R, Ducastelle F, Loiseau A, Cau M, Attal-Tretout B, Rosencher E, Goux-Capes L (2005) Phys Rev Lett 94:037405

    Article  CAS  Google Scholar 

  27. Jaffrennou P, Barjon J, Lauret JS, Maguer A, Golberg D, Attal-Tretout B, Ducastelle F (2007) Loiseau A Physica Status Solidi 244:4147–4151

    Article  CAS  Google Scholar 

  28. Marinopoulos AG, Wirtz L, Marini A, Olevano V, Rubio A, Reining L (2004) Appl Phys A Mater Sci Process 78:1157–1167

    Article  CAS  Google Scholar 

  29. Man-Fai Ng, Zhang RQ (2004) Phys Rev B 69:115417

  30. Wang JL, Mezey PG (2006) J Chem Inf Model 46:801–807

    Article  CAS  Google Scholar 

  31. Wang JL, Mezey PG (2006) J Chem Inf Model 46:1965–1971

    Article  CAS  Google Scholar 

  32. Szakacs CE, Mezey PG (2008) J Phys Chem A 112:2477–2481

    Article  CAS  Google Scholar 

  33. Szakacs CE, Mezey PG (2008) J Phys Chem A 112:6783–6787

    Article  CAS  Google Scholar 

  34. Szakacs CE, Mezey PG (2009) J Phys Chem A 113:5157–5159

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC et al. (2004) Gaussian, Inc., Wallingford

  36. Flükiger P, Lüthi HP, Portmann S, Weber J (2000) Swiss National Supercomputing Centre CSCS Manno Switzerland

  37. Timoshkin AY, Schaefer HF III (2004) J Am Chem Soc 126:12141–12154

    Article  CAS  Google Scholar 

  38. Timoshkin AY, Schaefer HF III (2008) J Phys Chem C 112:13816–13836

    Article  CAS  Google Scholar 

  39. Kormos BL, Jegier JA, Ewbank PC, Pernisz U, Young VG Jr, Cramer CJ, Gladfelter WL (2005) J Am Chem Soc 127:1493–1503

    Article  CAS  Google Scholar 

  40. Kormos BL, Cramer CJ, Gladfelter WL (2006) J Phys Chem A 110:494–502

    Article  CAS  Google Scholar 

  41. Mezey PG (1999) Mol Phys 96:169–178

    Article  CAS  Google Scholar 

  42. Filatov M, Cramer CJ (2005) J Chem Phys 123:124101–124107

    Article  Google Scholar 

  43. Song JW, Tsuneda T, Sato T, Hirao K (2011) Theor Chem Acc 130:851–857

    Google Scholar 

  44. Saito T, Nishihara S, Yamanaka S, Kitagawa Y, Kawakami T, Yamada S, Isobe H, Okumura M, Yamaguchi K (2011) Theor Chem Acc 130:739–748

    Google Scholar 

  45. Saito T, Nishihara S, Yamanaka S, Kitagawa Y, Kawakami T, Yamada S, Isobe H, Okumura M, Yamaguchi K (2011) Theor Chem Acc 130:749–763

    Google Scholar 

  46. Aoki Y, Loboda O, Liu K, Makowski MA, Gu FL (2011) Theor Chem Acc 130:595–608

    Google Scholar 

  47. Li X, Staykov A, Yoshizawa K (2011) Theor Chem Acc 130:765–774

    Google Scholar 

Download references

Acknowledgments

This study has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Research Chair (CRC), the Scientific Modeling and Simulation Laboratory (SMSL), and Memorial University of Newfoundland. We thank for the Atlantic Computational Excellence Network (ACEnet) Atlantic Division for computer resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Mezey.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday; this article was intended for publication in the Imamura Festschrift Issue of TCA, volume 130, numbers 4–6, December 2011, but was not yet in final form at the time of that issue’s completion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, E., Mezey, P.G. Imperfect periodicity and systematic changes of some structural features along linear polymers: the case of rod-like boron/nitrogen nanostructures. Theor Chem Acc 131, 1097 (2012). https://doi.org/10.1007/s00214-012-1097-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1097-y

Keywords

Navigation