Skip to main content
Log in

Structural relaxation effects on the lowest \(4f{-}5d\) transition of \(\hbox {Ce}^{3+}\) in garnets

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The role of structural relaxations on the energy of the lowest \(4f{-}5d\) transition of \(\hbox {Ce}^{3+}\) in garnets is studied by means of ab initio calculations. This study completes previous studies on the roles of the interactions of the Cerium impurity with its first neighbors and with the rest of the solid hosts, before the relaxations take place. Periodic boundary conditions density functional theory calculations (DFT) and second-order perturbation theory spin–orbit coupling embedded-cluster wave function theory calculations (WFT) have been performed in the garnets \(\hbox {Y}_{3}\hbox {Al}_{5}\hbox {O}_{12}\), \(\hbox {Lu}_{3}\hbox {Al}_{5}\hbox {O}_{12}\), \(\hbox {Y}_{3}\hbox {Ga}_{5}\hbox {O}_{12}\), \(\hbox {Lu}_{3}\hbox {Ga}_{5}\hbox {O}_{12}\), and \(\hbox {Ca}_{3}\hbox {Sc}_{2}\hbox {Si}_{3}\hbox {O}_{12}\) doped with \(\hbox {Ce}^{3+}\). The local relaxation effects on the \(4f{-}5d\) transition are similar in the WFT and DFT calculations. They produce a blue shift in Al and Ga garnets in which Ce substitutes for smaller Y and Lu cations, which is found to be basically due to the local expansions around the impurity, with only minor contributions from angular relaxations. Atomic relaxations of more distant neighbors enhance the blue shift. Although the embedding effects of the undistorted garnets are known to make the differences between the \(4f{-}5d\) transition in Al and Ga garnets, we find that the structural relaxations are responsible for the small differences between the \(4f{-}5d\) transition in \(\hbox {Y}_{3}\hbox {Al}_{5}\hbox {O}_{12}\):\(\hbox {Ce}^{3+}\) and \(\hbox {Lu}_{3}\hbox {Al}_{5}\hbox {O}_{12}\):\(\hbox {Ce}^{3+}\), and in \(\hbox {Y}_{3}\hbox {Ga}_{5}\hbox {O}_{12}\):\(\hbox {Ce}^{3+}\) and \(\hbox {Lu}_{3}\hbox {Ga}_{5}\hbox{O}_{12}\):\(\hbox {Ce}^{3+}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nakamura S, Fasol G (1997) The blue laser diode: GaN based light emitters and lasers. Springer, Berlin

    Book  Google Scholar 

  2. Jüstel T, Nikol H, Ronda C (1998) Angew Chem Int Ed 37:3084

    Article  Google Scholar 

  3. Blasse G, Bril A (1967) J Chem Phys 47:5139

    Article  CAS  Google Scholar 

  4. Setlur AA, Heward WJ, Gao Y, Srivastava AM, Chandran RG, Shankar MV (2006) Chem Mater 18:3314

    Article  CAS  Google Scholar 

  5. Shimomura Y, Honma T, Shigeiwa M, Akai T, Okamoto K, Kijima N (2007) J Electrochem Soc 154:J35

    Article  CAS  Google Scholar 

  6. Weber MJ (2002) J Lumin 100:35

    Article  CAS  Google Scholar 

  7. Holloway WW, Kestigian M (1969) J Opt Soc Am 59:60

    Article  CAS  Google Scholar 

  8. Pan YX, Wang W, Liu GK, Skanthakumar S, Rosenberg RA, Guo XZ, Li KK (2009) J Alloys Compd 488:638

    Article  CAS  Google Scholar 

  9. Muñoz-García AB, Seijo L (2010) Phys Rev B 82:184118

    Article  Google Scholar 

  10. Muñoz-García AB, Pascual JL, Barandiarán Z, Seijo L (2010) Phys Rev B 82:064114

    Article  Google Scholar 

  11. Seijo L, Barandiarán Z (2013a) Opt Mater 35:1932

    Article  CAS  Google Scholar 

  12. Seijo L, Barandiarán Z (2013b) Phys Chem Chem Phys 15:19221

    Article  CAS  Google Scholar 

  13. Karlström G, Lindh R, Malmqvist PA, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrady P et al (2003) Comput Mater Sci 28:222

    Article  Google Scholar 

  14. Douglas M, Kroll NM (1974) Ann Phys (NY) 82:89

    Article  CAS  Google Scholar 

  15. Hess BA (1986) Phys Rev A 33:3742

    Article  CAS  Google Scholar 

  16. Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157

    Article  CAS  Google Scholar 

  17. Siegbahn PEM, Heiberg A, Roos BO, Levy B (1980) Phys Scr 21:323

    Article  CAS  Google Scholar 

  18. Siegbahn PEM, Heiberg A, Almlöf J, Roos BO (1981) J Chem Phys 74:2384

    Article  CAS  Google Scholar 

  19. Andersson K, Malmqvist P-A, Roos BO, Sadlej AJ, Wolinski K (1990) J Phys Chem 94:5483

    Article  CAS  Google Scholar 

  20. Andersson K, Malmqvist P-A, Roos BO (1992) J Chem Phys 96:1218

    Article  CAS  Google Scholar 

  21. Zaitsevskii A, Malrieu J-P (1995) Chem Phys Lett 233:597

    Article  CAS  Google Scholar 

  22. Finley J, Malmqvist P-A, Roos BO, Serrano-Andrés L (1998) Chem Phys Lett 288:299

    Article  CAS  Google Scholar 

  23. Hess BA, Marian CM, Wahlgren U, Gropen O (1996) Chem Phys Lett 251:365

    Article  CAS  Google Scholar 

  24. Malmqvist PA, Roos BO, Schimmelpfennig B (2002) Chem Phys Lett 357:230

    Article  CAS  Google Scholar 

  25. Roos BO, Lindh R, Malmqvist PA, Veryazov V, Widmark PO (2008) J Chem Phys 112:11431

    Article  CAS  Google Scholar 

  26. Roos BO, Lindh R, Malmqvist PA, Veryazov V, Widmark PO (2005) J Phys Chem A 108:2851

    Article  Google Scholar 

  27. Barandiarán Z, Seijo L (1988) J Chem Phys 89:5739

    Article  Google Scholar 

  28. Gracia J, Seijo L, Barandiarán Z, Curulla D, Niemansverdriet H, van Gennip W (2008) J Lumin 128:1248

    Article  CAS  Google Scholar 

  29. Seijo L, Barandiarán Z (1991) J Chem Phys 94:8158

    Article  CAS  Google Scholar 

  30. Gellé A, Lepetit M-B (2008) J Chem Phys 128:244716

    Article  Google Scholar 

  31. Ewald PP (1921) Ann Phys 369:253

    Article  Google Scholar 

  32. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  33. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  34. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  35. Kresse G, Hafner J (1994) Phys Rev B 49:14251

    Article  CAS  Google Scholar 

  36. Kresse G, Furthmüller J (1996a) Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  37. Kresse G, Furthmüller J (1996b) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  38. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  39. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505

    Article  CAS  Google Scholar 

  40. Ning L, Yang F, Duan C, Zhang Y, Liang J, Cui Z (2012) J Phys Condens Matter 24:05502

    Article  Google Scholar 

  41. Muñoz-García AB, Seijo L (2011) J Phys Chem A 115:815

    Article  Google Scholar 

  42. Shannon RD (1976) Acta Crystallogr A 32:751

    Article  Google Scholar 

  43. Ghigna P, Pin S, Ronda C, Speghini A, Piccinelli F, Bettinelli M (2011) Opt Mater 34:19

    Article  CAS  Google Scholar 

  44. Seijo L, Barandiarán Z (2001) J Chem Phys 115:5554

    Article  CAS  Google Scholar 

  45. Barandiarán Z, Seijo L (2003) J Chem Phys 119:3785

    Article  Google Scholar 

  46. Barandiarán Z, Seijo L (2015) In: Dolg N (ed) Computational methods in lanthanide and actinide chemistry. Wiley, New York

  47. Euler F, Bruce JA (1965) Acta Crystallogr 19:971

    Article  CAS  Google Scholar 

  48. Muñoz-García AB, Anglada E, Seijo L (2009) Int J Quantum Chem 109:1991

    Article  Google Scholar 

  49. Nakatsuka A, Yoshiasa A, Takeno S (1995) Acta Crystallogr B 51:737

    Article  Google Scholar 

  50. Quartieri S, Oberti R, Boiocchi M, Dalconi MC, Boscherini F, Safonova O, Woodland AB (2006) Am Mineral 91:1240

    Article  CAS  Google Scholar 

  51. Ogieglo JM, Zych A, Ivanovskikh KV, Jüstel T, Ronda CR, Meijerink A (2012) J Phys Chem A 116:8464

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by a grant from Ministerio de Economía y Competitivad, Spain (Dirección General de Investigación y Gestión del Plan Nacional de I+D+I, MAT2011-24586). QMP thanks the Erasmus Mundus Master in Theoretical Chemistry and Computational Modelling (TCCM) and the Flemish Science Foundation (FWO) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Seijo.

Additional information

Published as part of the special collection of articles derived from the 9th Congress on Electronic Structure: Principles and Applications (ESPA 2014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phung, Q.M., Barandiarán, Z. & Seijo, L. Structural relaxation effects on the lowest \(4f{-}5d\) transition of \(\hbox {Ce}^{3+}\) in garnets. Theor Chem Acc 134, 37 (2015). https://doi.org/10.1007/s00214-015-1639-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1639-1

Keywords

Navigation