Skip to main content
Log in

Computational study of naphthylisoquinoline alkaloids with antimalarial activity from Dioncophyllaceae and Ancistrodaceae in vacuo

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

This study investigates 33 naphthylisoquinoline alkaloids with antimalarial activity isolated from different tropical plants belonging to the Dioncophyllaceae and Ancistrodaceae families. All these molecules have two moieties, a naphthalene moiety and an isoquinoline moiety. A thorough conformational study was carried in vacuo at two levels of theory, HF/6-31G(d,p) and DFT/B3LYP/6-31+G(d,p). Frequency calculations were also performed in vacuo for all the calculated conformers, at both levels of theory. The major stabilizing factors are the intramolecular hydrogen bonds. The mutual orientation of the two moieties also has considerable influence, with marked preference for the naphthalene moiety to be perpendicular to the isoquinoline moiety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) Nature 434:214–217

    Article  CAS  Google Scholar 

  2. World Health Organization (2010) World malaria report 2010 summary. http://www.who.int/malaria/world_malaria_report_2010/malaria2010_summary_keypoints_fr.pdf

  3. World Health Organization (2011) World malaria report 2011 summary. http://www.who.int/malaria/world_malaria_report_2011/wmr2011_summary_keypoints_fr.pdf

  4. World Health Organization (2013) World malaria report 2013 summary. http://www.who.int/malaria/publications/world_malaria_report_2013/report/en/

  5. World Health Organization, 2014

  6. WHO (2008). http://rbm.who.int/wmr.2008

  7. WHO: malaria fact sheet no. 94 April 20l0. Consideration. http://www.who.int/mediacentre/factsheets/fs094/en

  8. The Health World Report (2002) reducing risks, promoting healthy life. World Health Organization, Geneva

    Google Scholar 

  9. Mital A (2007) Curr Med Chem 14:759–773

    Article  CAS  Google Scholar 

  10. Marco M, Cateron MT (2012) Curr Top Med Chem 12:408–444

    Article  CAS  Google Scholar 

  11. Alagona G, Ghio C (2009) Phys Chem Chem Phys 11:776–790

    Article  CAS  Google Scholar 

  12. Bringmann G, Pokorny F (1995) The naphthylisoquinoline alkaloids. In: Cordell GA (ed) The alkaloids: chemistry and pharmacology, vol 46. Academic Press, NewYork, pp 127–271

  13. Bringmann G, Kimbadi BL, Steinert C, Ndjoko KI, Brun R, Turini F, Heubl G, Mudogo V (2013) Org Lett 15:2590–2593

    Article  CAS  Google Scholar 

  14. Bringmann G, Zhang G, Büttner T, Bauckmann G, Kupfer T, Braunschweig H, Brun R, Mudogo V (2013) Chem Eur J 19:916–923

    Article  CAS  Google Scholar 

  15. Bringmann G, Feineis D (2001) J Exp Bot 52:2015–2022

    Article  CAS  Google Scholar 

  16. Said IM, Ahmad IB, Yahya MD, Marini AM (2001) Pharm Biol 39:357–363

    Article  Google Scholar 

  17. Chen Z, Wang B, Qin K, Zhang B, Su Q, Lin Q (1981) Acta Pharm Sin 16:519–523

    CAS  Google Scholar 

  18. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  19. François G, Timperman G, Holenz J, Assi LA, Geuder T, Maes L, Dubois J, Hanocq M, Bringmann G (1996) Ann Trop Med Parasitol 90:115–123

    Google Scholar 

  20. François G, Timperman W, Eling L, Assi LA, Holenz G, Bringmann G (1997) Antimicrob Agents Chemother 4:2533–2539

    Google Scholar 

  21. François G, Timperman G, Steenackers T, Assi LA, Holenz J, Bringmann G (1997) Parasitol Res 83:673–679

    Article  Google Scholar 

  22. Ponte-Sucre A, Faber JH, Gulder T, Kajahn I, Pedersen SEH, Schultheis M, Bringmann G, Moll H (2007) Antimicrob Agents Chemother 51:188–194

    Article  CAS  Google Scholar 

  23. Ruangrungsi N, Wongpanich V, Tantivatana P (1985) J Nat Prod 4:529–535

    Article  Google Scholar 

  24. Bringmann G, François G, Assi LA, Schlauer J (1998) Chimia 52:18–28

    CAS  Google Scholar 

  25. Bringmann G, Günther C, Ochse M, Schupp O, Tasler S (2001) Progress in the chemistry of organic natural products. In: Herz W, Falk H, Kirby GW, Moore RE (eds) vol 82. Springer, Wien, pp 1–249

  26. Bringmann G, Kajahn I, Reichert M, Pedersen SEH, Faber JH, Gulder T, Brun R, Christensen SB, Ponte-Sucre A, Moll H, Heubl G, Mudogo V (2006) J Org Chem 71:9348–9356

    Article  CAS  Google Scholar 

  27. Bringmann G, Dreyer M, Kopff H, Rischer H, Wohlfarth M, Hadi HA, Brun R, Meimberg H, Heubl G (2005) J Nat Prod 68:686–690

    Article  CAS  Google Scholar 

  28. Bringmann G, Zagst R, Reuscher H, Assi LA (1992) Phytochem 31:4011–4014

    Article  CAS  Google Scholar 

  29. Bringmann G, Pokorny F, Stäblein M, Schäffer M, Assi LA (1993) Phytochem 33:1511–1515

    Article  CAS  Google Scholar 

  30. Bringmann G, Schneider C, Assi LA (1993) Planta Med 59:A620

    Article  Google Scholar 

  31. Bringmann G, Zagst R, Schäffer M, Hallock YF, Cardellina JH II, John H, Boyd MR (1993) Angew Chem 105:1242–1243

    Article  CAS  Google Scholar 

  32. Hallock YF, Cardellina JH II, Schäffer M, Stahl M, Bringmann G, François G, Boyd MR (1997) Tetrahedron 53:8121–8128

    Article  CAS  Google Scholar 

  33. Hallock YF, Manfredi KP, Dai JR, Cardellina JH II, Gulakowski RJ, McMahon JB, Schäffer M, Stahl M, Gulden KP, Bringmann G, François G, Boyd MR (1997) J Nat Prod 60:677–683

    Article  CAS  Google Scholar 

  34. Guido F, Timperman G, Wijnand E, Ake LA, Holenz J, Bringmann G (1997) Antimicrob Agents Chemother 41:2533–2539

    Google Scholar 

  35. Bringmann G, Messer K, Schwöbel B, Brun R, Assi LA (2003) Phytochem 62:345–349

    Article  CAS  Google Scholar 

  36. Manfredi KP, Blunt JW, Cardellina JH, McMahon JB, Pannell LK, Cragg GM, Boyd MR (1991) J Med Chem 34:3402–3405

    Article  CAS  Google Scholar 

  37. Boyd MR, Hallock YF, Cardellina JH, Manfredi KP, Blunt JW, McMahon JB, Buckheit RW, Bringmann G, Schaffer M, Cragg GM, Thomas DW, Jato JG (1994) J Med Chem 37:1740–1745

    Article  CAS  Google Scholar 

  38. Hallock YF, Manfredi KP, Blunt JW, Cardellina JH, Schaffer M, Gulden KP, Bringmann G, Lee AY, Clardy J, Francois G, Boyd MR (1994) J Org Chem 59:6349–6355

    Article  CAS  Google Scholar 

  39. Gulakowski RJ, McMahon JB, Schaffer M, Stahl M, Gulden KP, Bringmann G, Francois G, Boyd MR (1997) J Nat Prod 60:677–683

    Article  Google Scholar 

  40. Hallock YF, Cardellina JH, Schaffer M, Bringmann G, Francois G, Boyd MR (1998) Bioorg Med Chem Lett 8:1729–1734

    Article  CAS  Google Scholar 

  41. Bringmann G, Zhang G, Ölschläger T, Stich A, Wud J, Chatterjee M, Brun R (2013) Highly selective antiplasmodial naphthylisoquinoline alkaloids from Ancistrocladus tectorius. Phytochem 91:220–228

    Article  CAS  Google Scholar 

  42. Zhang G (2012) Ph.D. thesis

  43. Bringmann G, Messer K, Brun R, Mudogo V (2002) J Nat Prod 65:1096–1101

    Article  CAS  Google Scholar 

  44. Govindachari TR, Parthasarathy PC, Rajagopalan TG, Desai HK, Ramachandran KS, Lee E (1975) Ind J Chem 13:641–643

    CAS  Google Scholar 

  45. Unger M, Dreyer M, Specker S, Laug S, Pelzing M, Neusuess C, Holzgrabe U, Bringmann G (2004) Phytochem Anal 15:21–26

    Article  CAS  Google Scholar 

  46. Anh NH, Porzel A, Ripperger H, Bringmann G, Schaffer M, God R, Tran VS, Adam G (1997) Phytochem 45:1287–1291

    Article  Google Scholar 

  47. Bringmann G, Spuziak J, Faber JH, Gulder T, Kajahn I, Dreyer M, Heubl G, Brun R, Mudogo V (2008) Phytochem 69:1065–1075

    Article  CAS  Google Scholar 

  48. Bringmann G, Hamm A, Guther C, Michel M, Brun R, Mudogo V (2000) J Nat Prod 63:1465–1470

    Article  CAS  Google Scholar 

  49. Bringmann G, Saeb W, Ruckert M, Mies J, Michel M, Mudogo V, Brun R (2003) Phytochem 62:631–636

    Article  CAS  Google Scholar 

  50. Bringmann G, Wohlfarth M, Rischer H, Schlauer J, Brun R (2002) Phytochem 61:195–204

    Article  CAS  Google Scholar 

  51. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  52. Harvey JN (2004) Principles and applications of density functional theory in inorganic chemistry I, structure and bonding. In: Kaltsoyannis N, McGrady JE (eds) vol 112. Springer, New York, 2004, pp 151–183

  53. Kabanda MM, Mammino L (2012) Int J Quantum Chem 112:3691–3702

    Article  CAS  Google Scholar 

  54. Mammino L, Kabanda MM (2009) J Mol Struct (Theochem) 901:210–219

    Article  CAS  Google Scholar 

  55. Mammino L, Kabanda MM (2009) J Phys Chem A 113:15064–15077

    Article  CAS  Google Scholar 

  56. Mammino L, Kabanda MM (2012) Int J Quantum Chem 112:2650–2658

    Article  CAS  Google Scholar 

  57. Mammino L, Kabanda MM (2013) Mol Simul 39:1–13

    Article  CAS  Google Scholar 

  58. Irikura K, Johnson RD III, Kacker RN (2005) J Phys Chem A 10:8430–8437

    Article  Google Scholar 

  59. Merrick JP, Moran D, Radom LJ (2007) Phys Chem A 111:11683–11700

    Article  CAS  Google Scholar 

  60. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian Inc, Pittsburgh

    Google Scholar 

  61. Mohan N, Vijayalakshmi KP, Koga N, Suresh CH (2010) J Comput Chem 31:2874–2882

    CAS  Google Scholar 

  62. Jones CR, Baruah PK, Thompson AL, Scheiner S, Smith MD (2012) J Am Chem Soc 134:12064–12071

    Article  CAS  Google Scholar 

  63. Vibhute AM, Sureshan KM (2014) J Org Chem 79:4892–4908

    Article  CAS  Google Scholar 

  64. Sandoval-Lira J, Fuentes L, Quintero L, Hopfl H, Hernandez-Perez JM, Teran JL, Sartillo-Piscil F (2015) J Org Chem 80:4481–4490

    Article  CAS  Google Scholar 

  65. Mammino L, Bilonda MK, Tshiwawa T (2015) Progress in theoretical chemistry and physics A, vol 29. Springer, Switzerland, pp 92–114

    Google Scholar 

  66. Zhang G, Musgrave CB (2007) J Phys Chem A 111:1554–1561

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Mammino.

Additional information

Published as part of the special collection of articles “CHITEL 2015 - Torino - Italy”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

S-Fig. 1

Atom numbering utilized in this work. The C atoms in the rings are represented only by the numbers denoting their positions. In order to facilitate comparisons, the same atom numbering is utilized for atoms in corresponding positions in all the compounds studied; when needed, some numbers may be skipped for molecules in which some atoms are not present. The figures show the atom numbering of all the molecules considered in this study, to facilitate relating it to the criteria outlined in Fig. 2. Only the H atoms attached to O or N are numbered separately, while the H atoms attached to a C atom are given the same number as the C atom. (DOC 1770 kb)

S-Fig. 2

Optimized geometries of the conformers of the naphthylisoquinoline alkaloids considered in this work and acronyms used to denote them. (DOC 2059 kb)

S-Table 1

List of the naphthylisoquinoline alkaloids studied in this work: their names, their types, the type of coupling between moieties (atoms bonded by the single bond between the two moieties), their sources (plants from which they were derived), and the acronyms used to denote them in this work. (DOC 72 kb)

S-Table 2

Parameters of the intramolecular hydrogen bonds (IHB) of the conformers of the calculated naphthylisoquinoline alkaloids. The table considers all the IHB-type interactions. For the O−H···O IHBs, the length reported is the H···O distance. For the O−H··· π interaction, the length reported is the distance between the H of O−H group and the closest C atom in the aromatic ring. For C−H···O interactions, the length reported is the distance between the H of the CH group and the O atom (the H is given the same number as the C atom to which it is attached. The results are from HF/6-31G(d,p) and DFT/B3LYP/6-31+G(d,p) calculations in vacuo. Conformers with no IHBs (denoted with the letter z) are included in the list for completeness sake (so that the table lists all the calculated conformers) and to highlight the absence of IHBs. (DOC 217 kb)

S-Table 3

Vibrational frequencies (harmonic approximation) of the O−H bonds in the naphthylisoquinoline alkaloids. The frequency values have been scaled by 0.9024 and 0.9857, respectively, for HF/6-31G(d,p) [62] and DFT/B3LYP/6-31+G(d,p) [63] results in vacuo. (DOC 143 kb)

S-Table 4

Relative energy (ΔEcorrect, kcal/mol) corrected for ZPE and ZPE corrections (kcal/mol) of the calculated conformers of naphthylisoquinoline alkaloids. Results from HF/6-31G(d,p) and DFT/B3LYP/6-31+G(d,p) frequency calculations.(DOC 143 kb)

S-Table 5

Relative Gibbs free energies (ΔG, sum of electronic and thermal free energies) and thermal corrections to Gibbs free energy of the calculated conformers of naphthylisoquinoline alkaloids. Results from HF/6-31G(d,p) and DFT/6-31+G(d,p) frequency calculations. (DOC 139 kb)

S-Table 6

Dipole moments of the conformers of the calculated naphthylisoquinoline alkaloids in vacuo. HF/6-31G(d,p) and (DFT/B3LYP/6-31+G(d,p) results, respectively, denoted as HF and DFT in the column headings. (DOC 95 kb)

S-Table 7

HOMO–LUMO energy gaps of the conformers of the calculated naphthylisoquinoline alkaloids in vacuo. HF/6-31G(d,p) and (DFT/B3LYP/6-31+G(d,p) results, respectively, denoted as HF and DFT in the column headings.(DOC 89 kb)

S-Table 8

Absolute energies of the lowest energy conformers of naphthylisoquinoline alkaloids with the same molecular formula. Results from HF/6-31G(d,p) and DFT//6-31G+(d,p) calculations in vacuo (DOC 84 kb)

S-Table 9

Absolute energy of the lowest energy conformers of pairs of NPQ5- and NPQ7-type naphthylisoquinoline alkaloids with the same molecular formula. Results from HF/6-31G(d,p) and DFT/6-31G+(d,p) calculations in vacuo. (DOC 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mammino, L., Bilonda, M.K. Computational study of naphthylisoquinoline alkaloids with antimalarial activity from Dioncophyllaceae and Ancistrodaceae in vacuo . Theor Chem Acc 135, 101 (2016). https://doi.org/10.1007/s00214-016-1843-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1843-7

Keywords

Navigation