Skip to main content

Advertisement

Log in

Bond formation, electronic structure, and energy storage properties on polyoxometalate–carbon nanocomposites

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Keggin polyoxometalate structures are molecular clusters that, anchored to carbon matrices, have been used to form electrodes for energy storage devices, such as lithium batteries and supercapacitors. \([{\text{PMo}}_{12}{\text{O}}_{40}]^{3-}\) polyanions (PMo12) are examples of this kind of nanostructures that, grafted on amorphous carbon, have the capability to enhance the capacitive properties of these electrochemical ensembles. However, there is yet a poor understanding of the fundamental mechanisms for bond formation between them and carbon structures. It has been found experimentally that the presence of functional groups such as φ-NH2 and φ-OH assists on the chemical absorption of PMo12, but there is not enough information on the actual mechanism of the process. In order to gather further knowledge on these issues, we have performed quantum mechanical calculations, based on the density functional theory of atomic arrangements using graphene as carbon structure model, different functional groups, and PMo12. Our aim was to look for the nature of bonding among them, and to dig into the charge properties to relate them with the experimental observation. From the computations performed with PMo12 polyanion near to a graphene sheet, with and without the presence of functional groups, we conclude that there is a non-covalent/electrostatic bonding, made of weak \(\pi\)\(\pi\) stacking interactions between PMo12 and graphene. Calculations show that φ-NH2 and φ-OH functional groups are able to form covalent bonds with PMo12 in top and side fashion arrangements, being the latter the most stable. This is a powerful argument to explain the empirical observation on these groups, enhancing the PMo12 adsorption over carbon structures. We also found that the presence of the functional groups together with PMo12 creates electronic states that may act as alternative pathways that ions can track within electrochemical cells. Our results offer first-principle information relevant to the understanding of these composite materials, and the methodology could be directly applied to other Keggin structures or different functional groups, attached to graphene, to find potential advantages for energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Genovese M, Lian K (2015) Curr Opin Solid State Mater Sci 19:126

    Article  CAS  Google Scholar 

  2. Ji Y, Huang L, Hu J, Streb C, Song YF (2015) Energy Environ Sci 8:776

    Article  CAS  Google Scholar 

  3. Koper M (2013) Nat Chem 5:255

    Article  CAS  Google Scholar 

  4. Subbaraman R, Tripkovic D, Strmcnik D, Chang KC, Uchimura M, Paulikas A, Stamenkovic V, Markovic N (2011) Science 334:1256

    Article  CAS  Google Scholar 

  5. Wang X, Wang E, Lan Y, Hu C (2002) Electroanalysis 14:1116

    Article  CAS  Google Scholar 

  6. Liu H, He P, Li Z, Sun C, Shi L, Liu Y, Zhu G, Li J (2005) Electrochem Commun 7:1357

    Article  CAS  Google Scholar 

  7. Cuentas-Gallegos A, Miranda-Hernandez AVOM (2009) Electrochim Acta 54:4378

    Article  CAS  Google Scholar 

  8. Bianchini C, Shen P (2009) Chem Rev 109:4183

    Article  CAS  Google Scholar 

  9. Pan D, Chen J, Tao W, Nie L, Yao S (2006) Langmuir 22:5872

    Article  CAS  Google Scholar 

  10. Kawasaki N, Wang H, Nakanishi R, Hamanaka S, Kitaura R, Shinohara H, Yokoyama T, Yoshikawa H, Awaga K (2011) Angew Chem Int Ed 50:3471

    Article  CAS  Google Scholar 

  11. Azumi B, Ishihara T, Nishiguchi H, Takita Y (2002) Electrochemistry 70:869

    CAS  Google Scholar 

  12. Wang S, Li H, Li S, Liu F, Wu D, Feng X, Wu L (2013) Chem Eur J 19:10895

    Article  CAS  Google Scholar 

  13. Cuentas-Gallegos A, Gonzales-Toledo M, Rincon M (2007) Rev Mex Fis S 53:91

    CAS  Google Scholar 

  14. Cuentas-Gallegos A, Martinez-Rosales R, Baibarac M, Gomez-Romero P, Rincon ME (2007) Electrochem Commun 9:2088

    Article  CAS  Google Scholar 

  15. Baeza-Rostro D, Cuentas-Gallegos A (2013) J New Mater Electr Syst 13:203

    Google Scholar 

  16. Ruiz V, Suarez-Guevara J, Gomez-Romero P (2012) Electrochem Commun 24:35

    Article  CAS  Google Scholar 

  17. Suarez-Guevara J, Ruiz V, Gomez-Romero P (2014) J Mater Chem A 2:1014

    Article  CAS  Google Scholar 

  18. Suarez-Guevara J, Ruiz V, Gomez-Romero P (2014) PCCP 16:20411

    Article  CAS  Google Scholar 

  19. Chen HY, Wee G, Al-Oweini R, Friedl J, Tan K, Wang Y, Wong C, Kortz U, Stimming U, Srinivasan M (2014) ChemPhysChem 15:2162

    Article  CAS  Google Scholar 

  20. Alcaniz-Monge J, Trautwein G, Parres-Esclapez S, Macia-Agullo J (2008) Microporous Mesoporous Mater 115:440

    Article  CAS  Google Scholar 

  21. Song Y, Wang E, Kang Z, Lan Y, Tian C (2007) Mater Res Bull 42:1485

    Article  CAS  Google Scholar 

  22. Fei B, Lu H, Hu Z, Xin J (2006) Nanotechnology 17:1589

    Article  CAS  Google Scholar 

  23. Kang Z, Wang Y, Wang E, Lian S, Gao L, You W, Hu C, Xu L (2004) Solid State Commun 129:559

    Article  CAS  Google Scholar 

  24. Cuentas-Gallegos A, Jimenez-Penaloza S, Baeza-Rostro D, German-Garcia A (2010) J New Mater Electr Syst 13:369

    CAS  Google Scholar 

  25. Cuentas-Gallegos A, Martinez-Rosales R, Rincon M, Hirata G, Orozco G (2006) Opt Mater 29:126

    Article  CAS  Google Scholar 

  26. Cuentas-Gallegos A, Zamudio-Flores A, Casas-Cabanas M (2011) J Nano Res 14:11

    Article  CAS  Google Scholar 

  27. Tessonnier J, Goubert-Renaudin S, Alia S, Yan Y, Barteau M (2013) Langmuir 29:393

    Article  CAS  Google Scholar 

  28. Petit C, Bandosz T (2009) J Phys Chem C 113:3800

    Article  CAS  Google Scholar 

  29. Over H (2012) Chem Rev 112:3356

    Article  CAS  Google Scholar 

  30. Toma FM, Sartorel A, Iurlo M, Carraro M, Parisse P, Maccato C, Rapino S, Gonzalez BR, Amenitsch H, Ros TD, Casalis L, Goldoni A, Marcaccio M, Scorrano G, Scoles G, Paolucci F, Prato M, Bonchio M (2010) Nat Chem 2:826

    Article  CAS  Google Scholar 

  31. Li S, Yu X, Zhang G, Ma Y, Yao J, de Oliveira P (2011) Carbon 49:1906

    Article  CAS  Google Scholar 

  32. Wen S, Guan W, Kan Y, Yang G, Ma N, Yan L, Su Z, Chen G (2013) Phys Chem Chem Phys 15:9177

    Article  CAS  Google Scholar 

  33. Wen S, Guan W, Wang J, Lang Z, Yan L, Su Z (2012) Dalton Trans 41:4602

    Article  CAS  Google Scholar 

  34. Yang M, Gill-Choi B, Chul-Jung YKHS, Suk-Huh Y, Bok-Lee S (2014) Adv Funct Mater 24:7301

    Article  CAS  Google Scholar 

  35. Rozanska X, Sautet P, Delbecq F, Lefebvre F, Borshch S, Chermette H, Basset JM, Grinenval E (2011) Phys Chem Chem Phys 13:15955

    Article  CAS  Google Scholar 

  36. Aparicio-Angles X, Clotet A, Bo C, Poblet JM (2011) Phys Chem Chem Phys 13:15143

    Article  CAS  Google Scholar 

  37. Aparicio-Angles X, Miro P, Clotet A, Bo C, Poblet JM (2012) Chem Sci 3:2020

    Article  CAS  Google Scholar 

  38. Garrigue P, Delville M, Labrugere C, Cloutet E, Kulesza P, Morand J, Kuhn A (2004) Chem Mater 16:2984

    Article  CAS  Google Scholar 

  39. Cuentas-Gallegos A, Lopez-Cortina S, Brousse T, Pacheco-Catalan D, Fuentes-Quezada E, Mosqueda H, Orozco-Gamboa G (2016) J Solid State Electrochem 20:67

    Article  CAS  Google Scholar 

  40. Bulat F, Burgess J, Matis B, Baldwin J, Macaveiu L, Murray J, Politzer P (2012) J Phys Chem A 116:8644

    Article  CAS  Google Scholar 

  41. Darvish-Ganji M, Hosseini-khahb S, Amini-tabar Z (2015) Phys Chem Chem Phys 17:2504

    Article  CAS  Google Scholar 

  42. Liu W, Tkatchenko A, Scheffler M (2014) Acc Chem Res 47:3369

    Article  CAS  Google Scholar 

  43. Tkatchenko A, Scheffler M (2009) Phys Rev Lett 102:073005

    Article  Google Scholar 

  44. Carrasco J, Liu W, Michaelides A, Tkatchenko A (2014) J Chem Phys 140:084704

    Article  Google Scholar 

  45. Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X, Reuter K, Scheffler M (2009) Comput Phys Commun 180:2175

    Article  CAS  Google Scholar 

  46. Havu V, Havu P, Blum V, Scheffler M (2009) J Comput Phys 228:8367

    Article  CAS  Google Scholar 

  47. van Lenthe E, Ehlers A, Baerends E (1999) J Chem Phys 110:8943

    Article  Google Scholar 

  48. Lopez X, Carbo J, Bo C, Poblet JM (2012) Chem Soc Rev 41:7537

    Article  CAS  Google Scholar 

  49. Monkhorst H, Pack J (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  50. Kostyrko T, Lambert CJ, Bulka BR (2010) Phys Rev B Condens Matter Mater Phys 81:085308

    Article  Google Scholar 

  51. Ordejon P, Artacho E, Soler J (1996) Phys Rev B Condens Matter Mater Phys 53:R10441

    Article  CAS  Google Scholar 

  52. Sanchez-Portal D, Ordejon P, Artacho E, Soler JM (1997) Int J Quantum Chem 65:453

    Article  Google Scholar 

  53. Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) J Phys Condens Matter 14:2745

    Article  CAS  Google Scholar 

  54. Junquera J, Paz O, Sanchez-Portal D, Artacho E (2001) Phys Rev B Condens Matter Mater Phys 64:235111

    Article  Google Scholar 

  55. Wen SZ, Yang GC, Yan LK, Lii HB, Su ZM (2012) ChemPhysChem 14:610

    Article  Google Scholar 

  56. te Velde G, Bickelhaupt F, Baerends E, Fonseca-Guerra C, van Gisbergen S, Snijders J, Ziegler T (2001) J Comput Chem 22:931

    Article  Google Scholar 

  57. Ziegler T, Rauk A (1977) Theor Chim Acta 46:1

    Article  CAS  Google Scholar 

  58. Ziegler T, Rauk A, Baerends EJ (1977) Theor Chim Acta 43:261

    Article  CAS  Google Scholar 

  59. Baerends EJ, Autschbach J, Bérces A, Bo C, Boerrigter PM, Cavallo L, Chong DP, Deng L, Dickson RM, Ellis DE, Fan L, Fischer TH, Fonseca-Guerra C, van Gisbergen SJA, Groeneveld JA, Gritsenko OV, Grüning M, Harris FE, van den Hoek P, Jacobsen H, van Kessel G, Kootstra F, van Lenthe E, Osinga VP, Patchkovskii S, Philipsen PHT, Post D, Pye CC, Ravenek W, Ros P, Schipper PRT, Schreckenbach G, Snijders JG, Sola M, Swart M, Swerhone D, te Velde G, Vernooijs P, Versluis L, Visser O, van Wezenbeek E, Wiesenekker G, Wolff SK, Woo TK, Ziegler T. Amsterdam density functional (adf) (2014) Theoretical Chemistry. Vrije Universiteit, Amsterdam. http://www.scm.com

  60. Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Hommes NJvE (1996) J Am Chem Soc 118:6317

    Article  CAS  Google Scholar 

  61. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels Farkas AD, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 1:1

    Google Scholar 

  62. Ditchfield R, Hehre W, Pople J (1971) J Chem Phys 54:724

    Article  CAS  Google Scholar 

  63. Rassolov V, Ratner M, Pople J, Redfern P, Curtiss L (2001) J Comp Chem 22:976

    Article  CAS  Google Scholar 

  64. Hay P, Wadt W (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  65. Mulliken R (1955) J Chem Phys 23:1833

    Article  CAS  Google Scholar 

  66. Arellano J, Molina L, Rubio A, Alonso J (2000) J Chem Phys 112:8114

    Article  CAS  Google Scholar 

  67. Nalewajski R, Mrozek J, Michalak A (1997) Int J Quantum Chem 61:589

    Article  CAS  Google Scholar 

  68. Nalewajski R, Mrozek J (1994) Int J Quantum Chem 51:187

    Article  CAS  Google Scholar 

  69. Poater J, Solà M (2011) Chem Commun 47:11647

    Article  CAS  Google Scholar 

  70. Karadakov P (2008) J Phys Chem A 112:7303

    Article  CAS  Google Scholar 

  71. Gogonea V, Schleyer P, Schreiner P (1998) Angew Chem Int Ed 37:1945

    Article  CAS  Google Scholar 

  72. Wolinski K, Hilton J, Pulay P (1990) J Am Chem Soc 112:8251

    Article  CAS  Google Scholar 

  73. Pyykko P, Atsumi M (2009) Chem Eur J 15:12770

    Article  Google Scholar 

  74. Keïta B, Chauveau F, Théobald F, Bélanger D, Nadjo L (1992) Surf Sci 264:2761

    Article  Google Scholar 

  75. Watson BA, Barteau MA, Haggerty L, Lenhoff AM, Weber RS (1992) Langmuir 8:1145

    Article  CAS  Google Scholar 

  76. Kaba MS, Song IK, Barteau MA (1996) J Phys Chem 100:19577

    Article  CAS  Google Scholar 

  77. Song IK, Kaba M, Coulston G, Kourtakis K, Barteau MA (1996) Chem Mater 8:2352

    Article  CAS  Google Scholar 

  78. Kaba MS, Song IK, Barteau MA (1997) J Vac Sci Technol A 15:1299

    Article  CAS  Google Scholar 

  79. Song IK, Kaba M, Barteau MA, Lee WY (1998) Catal Today 44:285

    Article  CAS  Google Scholar 

  80. Liu S, Wang C, Zhai H, Li D (2003) J Mol Struct 654:215

    Article  CAS  Google Scholar 

  81. Ma D, Liang L, Chen W, Liu H, Song YF (2013) Adv Funct Mater 23:6100

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to acknowledge the support given by Cátedras-CONACYT (Consejo Nacional de Ciencia y Tecnología) under Project No. 1191; DGTIC (Dirección General de Cómputo y de Tecnologías de Información y Comunicación) and the Supercomputing Department of Universidad Nacional Autónoma de México for the computing resources under Project No. SC15-1-IR-88. The authors would like to acknowledge the financial support given by DGAPA (Dirección General de Asuntos del Personal Académico) under Project No. IN112414. We also thank Dr. Gabriel Merino for helpful discussions and Dr. Shizheng Wen for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Muñiz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 19927 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñiz, J., Cuentas-Gallegos, A.K., Robles, M. et al. Bond formation, electronic structure, and energy storage properties on polyoxometalate–carbon nanocomposites. Theor Chem Acc 135, 92 (2016). https://doi.org/10.1007/s00214-016-1855-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1855-3

Keywords

Navigation