Skip to main content
Log in

Simultaneous determination of zinc, copper, lead, and cadmium in fuel ethanol by anodic stripping voltammetry using a glassy carbon–mercury-film electrode

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new, versatile, and simple method for quantitative analysis of zinc, copper, lead, and cadmium in fuel ethanol by anodic stripping voltammetry is described. These metals can be quantified by direct dissolution of fuel ethanol in water and subsequent voltammetric measurement after the accumulation step. A maximum limit of 20% (v/v) ethanol in water solution was obtained for voltammetric measurements without loss of sensitivity for metal species. Chemical and operational optimum conditions were analyzed in this study; the values obtained were pH 2.9, a 4.7-μm thickness mercury film, a 1,000-rpm rotation frequency of the working electrode, and a 600-s pre-concentration time. Voltammetric measurements were obtained using linear scan (LSV), differential pulse (DPV), and square wave (SWV) modes and detection limits were in the range 10−9–10−8 mol L−1 for these metal species. The proposed method was compared with a traditional analytical technique, flame atomic absorption spectrometry (FAAS), for quantification of these metal species in commercial fuel ethanol samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Proálcool. http://www.tvcultura.com.br/resguia/historia/cenas/proalc.htm

  2. Sandelim K, Backman R (1999) Environ Sci Technol 33:4508–4513

    Article  Google Scholar 

  3. Jorgensen AD, Stetter JR (1982) Anal Chem 54:381–385

    CAS  Google Scholar 

  4. Skerfving S, Gerhardsson L, Schutz A, Stromberg U (1998) J Trace Elem Exp Med 11:289–301

    Article  CAS  Google Scholar 

  5. Bettinelli M, Spezia S, Baroni U, Bizzarri G (1996) Mikrochim Acta 123:217–230

    CAS  Google Scholar 

  6. Brüning IMRA, Malm EB (1982) Bio Technol Petrobrás 25:217–228

    Google Scholar 

  7. Carbonel V, Salvador A, de la Gardia M (1992) Fresenius J Anal Chem 355:529–532

    Google Scholar 

  8. Padilha PM, Padilha CCF, Rocha JC (1999) Quim Anal 18:299–303

    CAS  Google Scholar 

  9. Padilha PM, Gomes LA, Moreira JC, Filho NLD, Gushiken Y (1998) J Bras Chem Soc 9:494–498

    Google Scholar 

  10. Jagner D, Danielsson L, Josefson M, Westerlund S (1981) Anal Chim Acta 127:147–156

    Article  Google Scholar 

  11. Ahmed R, Valenta P, Nürberg HW (1981) Mikrochim Acta 1:171–184

    CAS  Google Scholar 

  12. Jagner D, Westerlund S (1980) Anal Chim Acta 117:159–164

    Article  CAS  Google Scholar 

  13. Stradiotto NR, Barbeira PJS, Mazo LH (1995) Analyst 120:1647–1650

    Article  Google Scholar 

  14. Djane N, Armalis S, Ndung’u K, Johansson G, Mathiasson L (1998) Analyst 123:393–396

    Article  CAS  PubMed  Google Scholar 

  15. Monterroso SCC, Carapuca HM, Duarte AC (2003) Electroanalysis 15:1878–1883

    Article  CAS  Google Scholar 

  16. Farghaly OA (2003) Microchem J 75:119–131

    Article  CAS  Google Scholar 

  17. Armalis S, Kubiliene E (2001) Chem Anal Warsaw 46:715–723

    CAS  Google Scholar 

  18. Ahmad N, Khan LA, Sattar A (1991) J Chem Soc Pakistan 13:74–78

    CAS  Google Scholar 

  19. Ceccon L, Coco FL, Monotti P, Rizzotti S (1999) Anal Chim Acta 386:41–46

    Article  Google Scholar 

  20. Munoz E, Palmero S, Garcia MA (2002) Talanta 57:985–992

    Article  CAS  Google Scholar 

  21. Korolczuk M (2000) Electroanalysis 12:1502–1504

    Article  CAS  Google Scholar 

  22. Rajeshwar K, Ibanez J (1997) Environmental electrochemistry—fundamentals and applications in pollution abatement. Academic, California, p 233

    Google Scholar 

  23. Bruss DB, Vries T (1956) J Am Chem Soc 78:733–736

    CAS  Google Scholar 

  24. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New York, pp 213–248

    Google Scholar 

  25. Bond AM (ed) (1980) Modern polarographic methods in analytical chemistry. Marcel dekker, New York, pp 178–197

    Google Scholar 

  26. Mannino S (1983) Analyst 108:1257–1260

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Firmino de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, M.F., Saczk, A.A., Okumura, L.L. et al. Simultaneous determination of zinc, copper, lead, and cadmium in fuel ethanol by anodic stripping voltammetry using a glassy carbon–mercury-film electrode. Anal Bioanal Chem 380, 135–140 (2004). https://doi.org/10.1007/s00216-004-2733-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2733-8

Keywords

Navigation