Skip to main content
Log in

Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Copper–fluoropolymer (Cu-CFx) nano-composite films are deposited by dual ion-beam sputtering. The extensive analytical characterization of these layers reveals that inorganic nanoparticles composed of Cu(II) species are evenly dispersed in a branched fluoropolymer matrix. In particular, X-ray photoelectron spectroscopy has been employed to study the surface chemical composition of the material and to assess how it changes on increasing the copper loading in the composite. Transmission electron microscopy reveals that the copper nanoclusters have a mean diameter of 2–3 nm and are homogeneously in-plane distributed in the composite films. Electrothermal atomic absorption spectroscopy has been used to study the kinetics of copper release in the solutions employed for the biological tests. The Cu-CFx layers are employed as bioactive coatings capable of inhibiting the growth of target microorganisms such as Saccharomyces cerevisiae, Escherichia coli, Staphylococcus aureus, and Lysteria. The results of the analytical characterization enable a strict correlation to be established among the chemical composition of the material surface, the concentration of copper dissolved in the microorganisms broths, and the bioactivity of the nano-structured layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cioffi N, Losito I, Torsi L, Farella I, Valentini A, Sabbatini L, Zambonin PG, Bleve-Zacheo T (2002) Chem Mater 14:804–811

    Article  CAS  Google Scholar 

  2. Cioffi N, Torsi L, Farella I, Altamura D, Valentini A, Ditaranto N, Sabbatini L, Zambonin PG, Bleve-Zacheo T (2004) Thin Solid Films 449:25–33

    Article  CAS  Google Scholar 

  3. Farella I, Valentini A, Cioffi N, Torsi L (2004) Appl Phys A, (in press)

  4. Convertino A, Valentini A, Bassi A, Cioffi N, Torsi L, Cirillo ENM (2002) Appl Phys Lett 80:1565–1567

    Article  CAS  Google Scholar 

  5. Cioffi N, Farella I, Torsi L, Valentini A, Sabbatini L, Zambonin PG (2003) Sensors Actuators B Chem B93:181–186

    Article  Google Scholar 

  6. Wu PK (1995) Mater Res Soc Symp Proc 385:79–90 and references therein cited

    CAS  Google Scholar 

  7. Dalacu D, Brown AP, Klemberg-Sapieha JE, Martinu L, Wertheimer MR, Najafi SI, Andrews MA (1999) Mater Res Soc Symp Proc 544:167–172

    CAS  Google Scholar 

  8. Goto A (1998) Jpn Kokai Tokkyo Koho, p 7, patent

  9. Gritsenko KP (1998) Proc SPIE Int Soc Opt Eng 3347:165–173

    Article  CAS  Google Scholar 

  10. Ueda Y, Yashiro T (1992) Jpn Kokai Tokkyo Koho, p 3, patent

  11. McLaughlin JA, Macken D, Meenan BJ, McAdams ET, Maguire PD (1995) Key Eng Mater 99:331–338

    Google Scholar 

  12. Cioffi N, Torsi L, Farella I, Altamura D, Valentini A, Quinto M, Sabbatini L, Zambonin PG (2004) Sensors Actuators B Chem B100:9–16

    Article  Google Scholar 

  13. Rotunno S (2002) Analisi dello swelling indotto da vapori di solventi organici in film di nanocompositi Teflon-like (Cu). Graduate thesis in physics, University of Bari

  14. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (in press)

  15. Quaranta F, Valentini A, Rizzi FR, Casamassima G (1993) J Appl Phys 74:244–248

    Article  CAS  Google Scholar 

  16. Pertsin AI, Pashunin YM (1996) Vysokomol Soedin Ser A Ser B 38:919–923

    CAS  Google Scholar 

  17. NIST XPS Database

  18. Weast RC (ed)(1976) Handbook of chemistry and physics, 57th edn. CRC Press Inc., Ohio

    Google Scholar 

  19. Toy MS (1971) J Polym Sci Polym Symp 34:273–279

    Google Scholar 

Download references

Acknowledgments

Miss C. Caso, Mr S. Giacummo, and Mr A. Tambone are gratefully thanked for their skilled assistance during biological experiments (C.C.) and XPS analyses (S.G., A.T.). Professor E. Traversa and Dr L. Ghibelli are greatly acknowledged for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Cioffi.

Appendix

Appendix

Curve-fit parameters employed for XPS data treatment

Full width at half maximum values (eV) as a function of spectral region and metal loading

φ

C1s

F1s

O1s

Cu2p3/2a

Photoelectron peaks (1 and 2)

Shake-up (1)

Shake-up (2 and 3)

0.05

2.29

2.66

0.15

2.34

2.82

2.40

3.64

3.18

3.12

0.25

2.13

2.71

2.40

3.82

3.82

2.90

  1. aPhotoelectron peaks 1 and 2 are relevant to signals falling at BE=934.0 eV and BE=935.8 eV. Shake-up signals 1, 2, and 3 are relevant to peaks falling at BE=939.2 eV, BE=941.0 eV and BE=943.4 eV, respectively

The curve-fit function (gl) takes into account the mixed Gaussian–Lorentzian character of the peak shape as reported in the following:

$$ {\text{gl}} = \frac{1} {{\left( {1 + \frac{{m\left( {x - {\text{center}}} \right)^2 }} {{b^2 }}} \right){\text{e}}^{\frac{{\left( {1 - m} \right)\ln \left( 2 \right)\left( {x - {\text{center}}} \right)^2 }} {{b^2 }}} }} $$

The tail function is:

$$ {\text{tail}} = \left( {{\text{CT}} + {\text{ETH}} \times {\text{e}}^{\left( {x - {\text{center}}} \right){\text{ET}}} } \right) $$

and the total function is:

$$ {\text{FitFunc}} = h \times \left[ {{\text{gl}} + \left( {1 - {\text{gl}}} \right) \times {\text{tail}}} \right] $$

where x is an energy variable, h the peak height, m the Lorentzian/Gaussian merge factor as Lorentzian percentage center (peak center), b the peak width, CT the tail constant, ETH the exponential tail height, and ET the exponential tail.

Generally speaking, curve-fitting was carried out without the use of tails (CT=0, EHT=0, ET=0), except for the cupric oxide component of the Cu2p3/2 and O1s spectral regions. For these signals, after analysis of a CuO standard, the parameters reported in the table were used.

Tail parameters used for curve-fitting in the O1s and Cu2p3/2 regions

 

CT

EHT

ET

CuO

0.01

0.0384

0.2

CuO

0.005

0.05

0.05

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cioffi, N., Ditaranto, N., Torsi, L. et al. Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Anal Bioanal Chem 381, 607–616 (2005). https://doi.org/10.1007/s00216-004-2761-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2761-4

Keywords

Navigation